
A New Derivation of Lorentz Transformation.

As remarked by Levy-Leblond,1 very little freedom is allowed for the choice
of a relativity group, so that the Poincaré group is an almost unique solution to
the problem2. In his original paper, Einstein derived the Lorentz transforma-
tion from the (sometimes implicit) successive assumptions of (i) linearity, (ii)
invariance of c, the light velocity in vacuum, (iii) existence of a composition law,
(iv) existence of a neutral element, and (v) reflection invariance.

But one may demonstrate that the postulate of the invariance of some ab-
solute velocity is not necessary for the construction of the special theory of
relativity. Indeed it was shown by Levy-Leblond1 that the Lorentz transfor-
mation may be obtaines through six sucessive constraints: {1} homogeneity of
space-time (translated as the linearity of the transformation of coordinates), {2}
isotropy of space-time (translated as reflection invariance), {3} group structure
(i.e. {3.1} existence of a neutral element, {3.2} of an inverse transformation,
and {3.3} of a composition law yielding a new transformation which is a mem-
ber of the group, viz, which is internal), and {4} the causality condition. The
last group axiom, associativity, is in fact straightforward in this case and leads
to no new constraint.

Actually this set of hypotheses is still overdetermined to derive the Lorentz
transformation. We shall indeed demonstrate hereafter that the Lorentz trans-
formation may be obtained from only the assumptions of {a} linearity, {b}
internal composition law, and {c} reflection invariance. All the other assump-
tions, in particular the postulate of the existence of an inverse tansformation
which is a member of the group, may be derived as consequences of these purely
mathematical constraints. The importance of this result, especially concerning
scale relativity, is that we do not have to postulate a full group law in order to
get the Lorentz behaviour: the hypothesis of a semigroup structure is sufficient.

Let us start from a linear transformation of coordinates: (Voir la démon-
stration de ces équations par Jean-Marc Lévy-Leblond, équations (8a) et(8b),
qui se sert de l’homogénéité de l’espace-temps pour les obtenir. Pour Laurent
Nottale, ces équations apparaissent sans hypothèse puisqu’elles correspondent
au choix le plus simple : la linéarité.)

x′ = a(v)x − b(v)t, (1a)

t′ = α(v)t− β(v)x. (1b)

In these equations and in the whole section, the coordinates x and t do not
denote a priori lenghts and times, but may refer to any kind of variables having
the mathematical proprieties considered. Equation (1) may be written as x′ =
a(v)[x − (b/a)t]. But we may define the ”velocity” v as v = b/a (Voir la
démonstration de Jean-Marc Lévy-Leblond, équation (9), pour l’identification
de v avec b/a) (in case of motion laws, this is indeed the velocity in the usual
meaning; in the case of scale laws, this is the state of scale or ”scale velocity”).
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Then, whithout any loss of generality, linearity alone leads to the general form

x′ = γ(v)[x − vt], (2a)

t′ = γ(v)[A(v)t −B(v)x], (2b)

where γ(v) now stands for a(v), and where A and B are new functions of v.
Let us now perform two successive transformations of the form (2):

x′ = γ(u)[x− ut], (3a)

t′ = γ(u)[A(u)t−B(u)x], (3b)

x′′ = γ(v)[x′ − vt′], (3c)

t′′ = γ(v)[A(v)t′ −B(v)x′]. (3d)

Ce qui donne :

x′′ = γ(u)γ(v)(x− ut)− v[A(u)t −B(u)x]

t′′ = γ(v)A(v)γ(u)[A(u)t −B(u)x]−B(v)γ(u)[x − ut]

= γ(u)γ(v)[1 +B(u)v]

[

x− u+A(u)v

1 +B(u)v
t

]

This results in the transformation

x′′ = γ(u)γ(v)[1 +B(u)v]

[

x− u+A(u)v

1 +B(u)v
t

]

, (4a)

t′′ = γ(u)γ(v)[A(u)A(v) +B(v)u]

[

t− A(v)B(u) +B(v)

A(u)A(v) +B(v)u
x

]

. (4b)

Then the principle of relativity tells us that the composed transformation (4)
keeps the same form as the initial one (2), in terms of a composed velocity w
given by the factor of t in (4a).
C’est à dire, on doit aussi avoir:

x′′ = γ(w)[x − wt],

t′′ = γ(w)[A(w)t −B(w)x].

We get four conditions:

w =
u+A(u)v

1 +B(u)v
, (5a)

γ(w) = γ(u)γ(v)[1 +B(u)v], (5b)

γ(w)A(w) = γ(u)γ(v)[A(u)A(v) +B(v)u], (5c)

B(w)

A(w)
=

A(v)B(u) +B(v)

A(u)A(v) +B(v)u
. (5d)
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Our third postulate is reflection invariance. It reflects the fact that the choice
of the orientation of the x (and x′) axis is completely arbitrary, and should be
indistinguishable from the alternative choice (−x,−x′). With this new choice,
the transformation (3) becomes

−x′ = γ(u′)(−x− u′t),

t′ = γ(u′)[A(u′)t+B(u′)x]

in terms of the value u′ taken by the relative velocity in the new orientation.
The requirement that the two orientations be indistinguishable yields u′ = −u.
(Voir la démonstration de Jean-Marc Lévy-Leblond, équation (14), qui se sert
de l’isotropie de l’espace (reflection invariance)). This leads to parity relations1

for the three unknown functions γ, A and B:

γ(−v) = γ(v), A(−v) = A(v), B(−v) = −B(v). (6)

(et B(0) = −B(0) donc B(0) = 0).
Combining Eqs. (5a), (5b) and (5c) yields the relation. Je détaille un peu :
On réécrit l’équation (5c) :

A(w) =
γ(u)γ(v)[A(u)A(v) +B(v)u]

γ(w)

En remplaçant γ(w) donné par l’équation (5b) :

A(w) =
γ(u)γ(v)[A(u)A(v) +B(v)u]

γ(u)γ(v)[1 +B(u)v]

En simplifiant par γ(u)γ(v) et en remplaçant w par sa valeur donnée par
l’équation (5a) :

A

[

u+A(u)v

1 +B(u)v

]

=
A(u)A(v) +B(v)u

1 +B(u)v
. (7)

Taking v = 0 in this equation gives (pour v = 0, A(u) = A(u)A(0) +B(0)u)

A(u)[1−A(0)] = uB(0). (8)

Taking u = 0 yields only two solutions, A(0) = 0 or A(0) = 1. The first case
gives A(u) = uB(0). B(0) 6= 0 is excluded by reflection invariance (6); then
A(u) = 0. But (5d) becomes A(w) = B(w)u, so that B(w) = 0: this is a case of
complete degeneration to only one efficient variable since t′ = 0 for any u, which
can thus be excluded, since we are looking for two-variable transformations. We
are left with A(0) = 1, which implies B(0) = 0, and the existence of a neutral
element is demonstrated. Let us now take v = −u in (7) after accounting for (6),
and introduce a new even function F (u) = A(u) − 1, which verifies F (0) = 0.
We obtain

2F (u)
1 + F (u)/2

1− uB(u)
= F

[

uF (u)

1− uB(u)

]

(9)
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We shall now use the fact that B and F are continuous functions and that
B(0) = 0. This implies that there exists η0 > 0 such that in the interval
−η0 < u < η0, 1 − uB and 1 + F/2 become bounded to k1 < 1 − uB(u) < k2
and k3 < 1 + F (u)/2 < k4 with k1, k2, k3 and k4 > 0.
Donc, pour η0 petit, l’équation (9) devient :

2F (u) = F [uF (u)]

C’est immédiat, il suffisait d’imaginer que l’on s’approche de u = 0 dans l’équa-
tion (7).
Soit alors u0/|F (u0)| < ε avec ε ≪ 1
On a 2F (u0) = F [u0F (u0)]
On pose u1 = u0F (u0), donc u1 ≪ u0 puisque F (u0) ≪ 1
Donc F (u1) = 2F (u0)
Comme u1 est plus petit que u0, on peut recommencer avec u1 :
2F (u1) = F [u1(F (u1)]
On pose u2 = u1F (u1) = u0F (u0)× 2F (u0) = u0F

2(u0)× 2,
Donc F (u2) = 2F (u1) = 22F (u0)
2F (u2) = F [u2(F (u2)]
On pose u3 = u2F (u2) = u0F

2(u0)× 2× 22F (u0) = u0F
3(u0)× 23,

F (u3) = 2F (u2) = 23F (u0)

...

up = u0F
P (u0)× 2(1+2+···+p−2+p−1)

= u0F
P (u0)2

p(p−1)/2

F (up) = 2pF (u0)

En prenant la valeur absolue des deux dernières égalité :

|up| = |u0||F p(u0)|2p(p−1)/2

|F (up)| = |F (u0)|2p

Pour u0 donné, on pose que la fonction F prend la valeur F (u0) = F0.
On peut toujours écrire F0 sous la forme F0 = 2−n avec n > 0
car F (u0) < ε ≪ 1.
Ceci fixe la valeur de n à :

n = − log2 F0

Avec cette notation, on a :

|up| = |u0||2−np|2p(p−1)/2

= |u0|2−np2p(p−1)/2 car 2x > 0 ∀x ∈ R

= |u0|2p[(p−1)/2−n]

|F (up)| = 2p2−n

= 2p−n
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Lorsque le rang p devient supérieur à n, on a :

|F (up)| = 2p−n > 1 ≫ ε

A noter que lorsque le rang p est égale à Int[n], on a :

|F (up)| = 2Int[n]−n >
1

2
≫ ε

Et, lorsque le rang p est inférieur à 2n+ 1, on a p−1
2 < n et :

|up| < |u0|

Donc ∀u0 / |F (u0| < ε, on peut toujours trouver une valeur up de u telle que l’on
ait |F (up)| > ε et en même temps |up| < |u0|. Il suffit en fait que n < p < 2n+1.
La fonction F ne peut donc pas tendre de façon continue vers 0. F doit par
conséquent être constante, et comme F (0) = 0 on a F (u) = 0 ∀u.
Donc

A(u) = 1. (10)

As a consequence (7) becomes B(u)v = B(v)u, a relation which finally con-
strains the B function to be

B(v) = κv, (11)

where κ is a constant.
En effet, B(u)/u = B(v)/v et comme u 6= v on a B(v) = Cstv.
At this stage of our demonstration, the law of transformation of velocities is
already fixed to the Einstein-Lorentz form (équation (5a)):

w =
u+ v

1 + κuv
, (12)

and it is easy to verify that a full group law is obtained, i.e. the existence of an
identity transformation and an inverse transformation is demonstrated rather
than postulated. Consider now the γ factor. It satisfies the condition (équation
(5b)):

γ

(

u+ v

1 + κuv

)

= γ(u)γ(v)(1 + κuv). (13)

Let us consider the case u = −v. Equation (13) reads γ(0) = γ(v)γ(−v)(1−κv2).
For v = 0 it becomes γ(0) = [γ(0)]2 implying γ(0) = 1, (ou γ(0) = 0 mais alors
x′ = t′ = 0. On note que γ(0) = 1 et l’élément neutre est démontré) and we get
(toujour pour u = −v):

γ(v)γ(−v) =
1

1− κv2
, (14)
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The final step to the Lorentz transformation is straightforward from reflec-
tion invariance, which implies that γ(v) = γ(−v) (see Eq. 6) and fixes the γ
factor in its Lorentz-Einstein form:

γ(v) =
1√

1− κv2
. (15)

The case κ < 0 yields a non-ordered group (applying two successive positive
velocities may yield a negative one), and we are left with only two physical
solutions, the Galileo (κ = 0) and Lorentz (κ = c−2 > 0) groups. Three of their
properties (existence of a neutral element and of an inverse element, commuta-
tivity in case of one space dimension) have not been postulated, but deduced
from our initial axioms.

Let us end this section with a brief but important comment. We have
shown that, once linearity is assumed, the Lorentz transformation may be ob-
tained through only the postulates of internal composition law and reflection
invariance. Linearity is not a constraint by itself: indeed it corresponds to the
simplest-possible choice (i.e. when searching for a transformation which would
satisfy a given law, one may first look for a linear one, and then for non-linearity
only in case of failure, or later as a generalization). With regard to the other two
postulates, they may be seen as a direct translation of the Galilean principle of

relativity. Indeed the hypothesis that the composed coordinate transformation
(K → K ′′) and the transformation in the reversed frame (−K → −K ′) must
keep the same form as the initial one (K → K ′) is nothing but an application of
the Galilean principe of relativity (”the laws of nature must keep the same form
in different inertial reference systems”) to the laws of coordinate transformation

themselves, which are clearly part of the laws to which the principle should ap-
ply. So the general solution to the problem of inertial motion, without adding
any postulate to the way it might have been stated in the Galileo and Descartes
epoch, is actually Einstein’s special relativity, of which Galilean relativity is a
special case (c = ∞).

1Levy-Leblond, J.M., 1976, Am. J. Phys. 44, 271
2Bacry, H., & Levy-Leblond, 1968, J. Math. Phys. 9, 1605

6


