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A simple and deep standard mathematical theorem asserts the existence, for any
one-parameter differentiable group, of an additive parameter, such as the angle for
rotations and the rapidity parameter for Lorentz transformations. The importance
of this theorem for the applications of group theory in physics is stressed, and an
elementary proof is given. The theorem then is applied to the construction from first
principles of possible relativity groups.

INTRODUCTION

Special relativity usually is introduced through the
Lorentz transformation formulas

x′ =
x− vt√
1− v2

t′ =
t− vx√
1− v2

,

expressed in terms of the relative velocity v of the two
reference frames (our units are such that c = 1). These
formulas, it must be admitted, are not very elegant and
often seem complicated to the student. They imply new
and strange properties for the velocity: existence of a
limit velocity c, and the curious composition law:

v12 = (v1 + v2)/(1 + v1v2). (.1)

At a later stage, the student, in modern courses at least,
is introduced to the rapidity parameter ϕ defined by

v = tanhϕ (.2)

in terms of which the Lorentz formulas take the simple
form

{

x′ = coshϕx − sinhϕt

t′ = coshϕt− sinhϕx,

and the composition law becomes

ϕ12 = ϕ1 + ϕ2.

The additivity of rapidity exhibits at once the fundamen-
tal group property of Lorentz transformations.

Rapidity is not merely a convenient parameter. Its
introduction in the teaching of Einsteinian relativity
stresses the need to replace the Galilean velocity by two
separate concepts: “velocity” v, as expressing the time
rate of change of position, and “rapidity” ϕ, as the nat-
ural (additive) group parameter1. Emphasizing the dis-
tinction helps in eliminating difficulties. For instance,
students often ask whether the existence of a limit veloc-
ity c (for material particles) does not imply the existence
of a “limit reference frame”, which would contradict the
relativity principle. They also wonder how the considera-
tion of velocities greater than c (for “unmaterial” objects,
such as shadows—or for tachyons) can be consistent with
Einsteinian relativity. These pseudoparadoxes disappear
when it is realized that the intrinsic parameter of the
group law, expressing the transformation from one ref-
erence frame to another, is rapidity, which has no limit
and may increase indefinitely, while, conversely, there is

no rapidity, i.e., no change of reference frame, associated
with superluminal velocities2. Beyond its pedagogical
utility, rapidity in the recent years has become a com-
mon and efficient tool in particle physics.

It seems worthwhile, for these reasons, to introduce
rapidity as soon as possible in the teaching of relativ-
ity, namely, at the start. There is no need to go through
the expressions of Lorentz transformations using velocity,
and then to “discover” the elegant properties of rapidity
as if they resulted from some happy and unpredictable
circumstance. Indeed, there exists a deep, if simple,
mathematical theorem establishing in advance the ne-
cessity of such a parameter. The theorem asserts the ex-
istence of an additive parameter for any one-parameter
group (differentiable and connected). Unfortunately, this
theorem, despite its importance and simplicity, is usu-
ally introduced in connection with the general study of
Lie groups and their algebras, requiring rather elaborate
mathematics, unfit to the needs of elementary physics. It
is the purpose of the present paper to give a simple proof
of the theorem, to illustrate it by elementary examples,
and to use it as a basis for the derivation of relativity the-
ory. Besides this specific use, the present considerations
may also be considered as an introduction to some im-
portant ideas of the group theory which play an essential
role in contemporary theoretical physics.

The paper is organized as follows. In Sec. I, the
theorem is stated and proved. Section II is devoted to
some examples. Section III uses the theorem to present
a derivation of relativity theory, for one space dimen-
sion, from first principles, alternative to a recent pro-
posal. The new derivation allows for a straightforward
generalization to three-dimensional space, which is pre-
sented in Sec. IV.

I ADDITIVE PARAMETER THEOREM

We consider a “one-parameter group”, i.e., a group G,
the elements of which are labeled by real numbers. In
more rigorous terms, the group G is supposed to be in
one-to-one correspondence with some connected subset
S of R, which means that the set of parameters S is
just one single piece of the real line, finite or not. For
instance, S =] −∞, +∞[, if G is the translation group
with the length of the translation as a parameter, and
S =]− c, +c[ if G is the Lorentz group with the velocity
as a parameter. We denote by g(x), x ∈ S, the generic
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element of G. The group structure requires the existence
of a composition law: the product g(x)g(y) of two ele-
ments of G is an element of G labeled by a parameter
which is a function of x and y and will be denoted by
x ∗ y.

g(x)g(y) = g(x ∗ y)
We may as well identify each element of G with its pa-
rameter x, considering the group as the set S endowed
with the composition law ∗. This law of course satisfies
the group axioms, that is
1) associativity:

(x ∗ y) ∗ z = x ∗ (y ∗ z),
2) existence of a neutral element (identity) e:

e ∗ x = x ∗ e = x,

3) existence of an inverse x̄ for each element x:

x ∗ x̄ = x̄ ∗ x = e.

We now suppose that the composition law has some
smoothness property. More precisely, we ask that the
function fx of left multiplication by x,

fx(y)
df
= x ∗ y, (I.1)

possesses a first-order derivative, and we require it to
differ from zero at the neutral element

f ′

x(e) 6= 0. (I.2)

Writing the associativity property as

fx∗y(z) = fx[fy(z)]

and differentiating it with respect to z at the point z = e,
we get, taking into account fy(e) = y:

f ′

x∗y(e) = f ′

x(y)f
′

y(e). (I.3)

The above requirement (I.2) therefore implies that
f ′

x(y) 6= 0 for all y ∈ S, so that we have fx(y1) 6= fx(y2)
and x ∗ y1 6= x ∗ y2 whenever y1 6= y2. For this reason we
call a parametrization with the above smoothness prop-
erties (I.1)-(I.2) an “essential” parametrization.

Of course the labeling of the group is arbitrary. If
we consider the Lorentz group, for instance, we can
equally well characterize a given Lorentz transformation
by its velocity v, or its rapidity ϕ or its “momentum”
v(1 − v2)−1/2 = sinhϕ. Whether there is some natu-

ral parametrization for the abstract group G, precisely
is the question we consider here. A general change of
parametrization may be defined by some differentiable
function λ such that λ−1 exists as well. The group ele-
ments are now labeled by ξ = λ(x), η = λ(y), etc., and
the composition law is given by

ξoη = λ[λ−1(ξ) ∗ λ−1(η)].

The additive parameter theorem, which we now prove,
mainly asserts that it is always possible to choose a suit-
able λ such that the o law simply is the ordinary addition
of real numbers; that is, a function λ such that

λ(x ∗ y) = λ(x) + λ(y). (I.4)

Differentiating (I.4) with respect to y, we obtain the fol-
lowing equation for λ:

λ′(x ∗ y).f ′

x(y) = λ′(y),

and remark that the identity (I.3) provides us at once
with a solution for this equation, namely:

λ′(x) = f ′

x(e)
−1.

The function λ defined by

λ(x) =

∫ x

e

[f ′

t(e)]
−1dt, (I.5)

therefore obeys the additive property (I.4). The lower
bound e in the integral is dictated, of course, by the re-
quirement that λ(e) = 0, an immediate consequence of
the addition law.

Is this parametrization unique? Let us denote by ξ,
η, etc. the additive parameters. Suppose that there ex-
ists another additive parametrization ξ′, η′, etc., given in
terms of the first one by some function µ: ξ′ = µ(ξ), it
must obey

µ(ξ + η) = µ(ξ) + µ(η).

It results that µ is a linear function

µ(ξ) = kξ,

i.e., the additive parametrization is unique up to a mul-
tiplicative constante. Indeed, such a constant could be
included in the expression (I.5) without altering its prop-
erty (I.4).

In conclusion, what we have proven is that under
the hypothesis of essential parametrization, any one-
dimensional connected differentiable group is isomorphic
to the additive group of real numbers. In particular, this
result implies that the group is abelian, which is far from
evident a priori3.
Now there are important groups without a differentiable
essential parametrization. The rotation group in the
plane is such a case; we may choose an additive pa-
rameter, the angle, but either we restrict its range to
[0, 2π] and lose differentiability, or take the entire set of
real numbers but lose uniqueness of the parametrization.
However, when the parametrization is not essential but
if f ′

x(e) differs from zero in a neighborhood of the iden-
tity, the isomorphism exists in such a neighborhood. The
general result, which we shall not prove, is that any con-
nected one-dimensional differentiable group is isomorphic
either to R (the real line) or to T = R/Z (the circle,
as the plane rotation group). One may even abandon
the hypothesis of differentiability and only ask for local
measurability of the function fx. A nice counterexam-
ple exhibiting the limits of the theorem is the following.
Consider a two-parameter group, not necessarily abelian,
for instance the one-dimensional translation-dilatation
group. Since, setwise, R2 has the same cardinality as
R, we may always replace the two real parameters of the
group by a single one using some bijection (such as the
old trick of combining two real numbers in decimal form
by writing a single number the odd and even digits of
which are those of the two numbers). The group now
is a “one-parameter” group (without any physical signifi-
cance, of course). However, since no one-to-one mapping
R

2 ↔ R can be a measurable one, the conditions of the
theorem are not fulfilled and there is no overall additive
parameter—and fortunately so, since the group is not
abelian!
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II SOME EXAMPLES

A. Consider the multiplicative group R× of (positive)
real numbers. We have here

fx(y) = xy, e = 1, f ′

t(e) = t.

The additive parameter, the existence of which is guaran-
teed by the theorem, is explicitly given by formula (I.5):

λ(x) =

∫ x

1

t−1dt = log x

Of course, this is but the definition of the Napierian log-
arithm function, the main property of which precisely
is to realize the isomorphism of the multiplicative group
of positive real numbers with the additive group of real
numbers.

B. The 2× 2 real symmetrical and unimodular matri-
ces form a group; the generic element may be written:

M =

(

a b
b a

)

, a2 − b2 = 1, a 6 1

Considering b as the parameter of the group with a =
(1 + b2)1/2, the group law may be written

b ∗ b′ = (1 + b2)1/2b′ + b(1 + b′2)1/2.

One has

fx(y) = (1 + x2)1/2y + x(1 + y2)1/2,

e = 0, f ′

t(e) = (1 + t2)1/2.

An additive parameter exists and is given by

ϕ(b) =

∫ b

0

(1 + t2)−1/2dt = arg sinh b. (II.1)

We have then

b = sinhϕ, a = coshϕ,

so that the group elements are written

M(ϕ) =

(

coshϕ sinhϕ
sinhϕ coshϕ

)

. (II.2)

This abstract group can be considered as the Lorentz
group for one space dimension, ϕ being now the rapid-
ity; we will investigate this group from a more physical
point of view in the next section.

There is another way to derive the expression (II.2),
avoiding for students the integration (II.1). It suffices to
assume the existence of the additive parameter ϕ and to
express the group law in terms of it:

M(ϕ)M(ϕ′) = M(ϕ+ ϕ′).

This matrix equation leads to:
{

a(ϕ+ ϕ′) = a(ϕ)a(ϕ′) + b(ϕ)b(ϕ′)

b(ϕ+ ϕ′) = b(ϕ)a(ϕ′) + a(ϕ)b(ϕ′)

Let us define
{

u(ϕ) = a(ϕ) + b(ϕ)

v(ϕ) = a(ϕ)− b(ϕ)

These functions then obey:
{

u(ϕ+ ϕ′) = u(ϕ)u(ϕ′)

v(ϕ+ ϕ′) = v(ϕ)v(ϕ′)

so that they are exponential functions. The unimodular-
ity condition a2 − b2 = 1 writes

u(ϕ)v(ϕ) = 1,

so that u and v are inverse exponentials:
{

u(ϕ) = exp(kϕ)

v(ϕ) = exp(−kϕ)

yielding in turn
{

a(ϕ) = cosh(kϕ)

b(ϕ) = sinh(kϕ)

in agreement, of course, with (II.2) (up to the allowed
constant factor k).

C. The 2×2 real antisymmetrical unimodular matrices

R =

(

a −b
b a

)

, a2 + b2 = 1

form a group as well, the group of plane rotations. Now,
because of the sign ambiguity, a = ±(1 − b2)1/2, the
parametrization by b is not an essential one. However, in
a neighborhood of the identity (characterized by b = 0,
a = 1), the group law reads

b ∗ b = (1− b2)1/2b′ + b(1− b′2)1/2.

One has

fx(y) = (1− x2)1/2y + x(1 − y2)1/2,

e = 0, f ′

t(e) = (1− t2)1/2

(It is clear that for t = 1, f ′

t(e) = 0 indeed.)
The additive parameter is given by

θ(b) =

∫ b

0

(1− t2)−1/2dt = arcsin b.

We have thus

b = sin θ, a = cos θ,

and

M(θ) =

(

cos θ − sin θ
sin θ cos θ

)

,

so that the group is identified with the rotation group in
the plane, in accordance with the general theorem.

One could also postulate the existence of θ and derive
all known properties of the functions a (cosine) and b
(sine) from the group law satisfied by the M matrices.

III RELATIVITY GROUPS FOR ONE-

DIMENSIONAL SPACE

We will now use the additive parameter theorem to
establish from first principles the theory of relativity.
The discussion here is limited to a one-dimensional space;
Sec. IV will generalize it to three-dimensional space. We
look for space-time transformations, connecting two iner-
tial reference frames, which satisfy the following require-
ments: (i) they preserve the homogeneity of space-time;
(ii) they form a group; (iii) they are compatible with
space reflexion; and (iv) they allow for some notion of
causality. It has already been shown elsewhere4 that such
hypotheses are sufficient to derive the Lorentz transfor-
mations (and their degenerate cousins, the Galilei trans-
formations). In particular there is no need for any pos-
tulate dealing with the constancy of the speed of light.
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The reader is referred to previous work for the discussion
of the physical significance of the new postulates4.

The homogeneity condition (i) is equivalent to the lin-
earity of the transformations in space-time. We thus may
write these transformations in matrix form

(

t′

x′

)

=

(

a(ϕ) b(ϕ)
c(ϕ) d(ϕ)

)(

t
x

)

= M(ϕ)

(

t
x

)

(III.1)

where we suppose the transformation to depend upon a
single parameter (see a discussion of this point in the
first paper of Ref. 6) which we choose as an additive
one, according to the fundamental theorem, so that the
matrices M(ϕ) obey

M(ϕ+ ϕ′) = M(ϕ)M(ϕ′) (III.2a)

M−1(ϕ) = M(−ϕ) (III.2b)

M(0) = I. (III.2c)

If we change the direction of the space axis, the transfor-
mation labeled by ϕ becomes represented by the matrix

M̂(ϕ) =

(

a(ϕ) −b(ϕ)
−c(ϕ) d(ϕ)

)

. (III.3)

The set of these matrices of course form a group iso-
morphic to the original one. The condition of symmetry
under space reflexion now requires the two groups to be
identical (and not only isomorphic); namely, there must
exist some parameter ϕ̌, depending on ϕ, such that

M̂(ϕ) = M(ϕ̌)

with

ϕ̌ = χ(ϕ). (III.4)

Now since ϕ is an additive parameter for the group of
matrices M̂ , it is clear that χ must be an additive func-
tion of ϕ. Indeed, from (III.4) one derives

M [χ(ϕ+ ϕ′)] = M̂(ϕ+ ϕ′) = M̂(ϕ) + M̂(ϕ′)

= M [χ(ϕ)] +M [χ(ϕ′)]

= M [χ(ϕ) + χ(ϕ′)].

It results that

ϕ̌ = κϕ. (III.5)

Now, changing twice the orientation of the space axis,
we must recover the original parametrization, so that
κ2 = 1. The case κ = 1 is trivial, since the equation
M(ϕ) = M̂(ϕ) leads to b = c = 0, that is, no relation-
ship between space and time. We are now left with the
condition

M̂(ϕ) = M(−ϕ) (= M−1(ϕ)). (III.6)

According to (III.3), the last relationship yields the par-
ity properties of the functions a, b, c, and d:

a(−ϕ) = a(ϕ) b(−ϕ) = −b(ϕ) (III.7)

c(−ϕ) = −c(ϕ) d(−ϕ) = d(ϕ) (III.8)

Taking into account the equalities
det M̂(ϕ) = detM(ϕ) and detM(−ϕ) = [detM(ϕ)]−1,
this relationship also yields the unimodularity property
of the M matrices

detM(ϕ) = 1. (III.9)

Therefore, (III.6) becomes
(

a(ϕ) −b(ϕ)
−c(ϕ) d(ϕ)

)

=

(

d(ϕ) −b(ϕ)
−c(ϕ) a(ϕ)

)

. (III.10)

From (III.10) we infer

a = d, a2 − bc = 1. (III.11)

Let us now consider the multiplication law (III.2a). In
particular we can write

a(ϕ+ ϕ′) = a(ϕ)a(ϕ′) + b(ϕ)c(ϕ′).

Since this law is commutative, we must have the equality

b(ϕ)c(ϕ′) = b(ϕ′)c(ϕ)

or

c(ϕ)

b(ϕ)
=

c(ϕ′)

b(ϕ′)
= Cst,

so that b and c are two proportional functions—unless
one is zero. The proportionality constant can be ad-
justed to 1 or −1. Indeed, changing the space scale by a
factor h:

x → hx,

corresponds, after (III.1) to the following transforma-
tions of the functions b and c and their quotient

b → h−1b, c → hc,
c

b
→ h2

c

b
.

Four cases therefore can be distinguished
1○ b = c : The M matrices are unimodular matrices of

the type

M(ϕ) =

(

a(ϕ) b(ϕ)
b(ϕ) a(ϕ)

)

.

We recover the Lorentz group (see Sec. II B)
2○ b = −c : The M matrices are unimodular matrices of

the type

M(ϕ) =

(

a(ϕ) b(ϕ)
−b(ϕ) a(ϕ)

)

.

The group (see Sec. II C) is a rotation group—in space
time!
3○ b = 0 : The modularity property (III.11) implies that
a = 1. The M matrices are of the type

M(ϕ) =

(

1 0
c(ϕ) 1

)

.

The group law yields

c(ϕ+ ϕ′) = c(ϕ) + c(ϕ′)

or

c(ϕ) = γϕ.

The corresponding group is the Galilei group with a di-
mensionless parameter ϕ (and γ an arbitrary velocity
unit).
4○ c = 0 : Proceeding as in 3○ we obtain

M(ϕ) =

(

1 βϕ
0 1

)

,

which is the definition of the Carroll group.
We now introduce a requirement of causality4 accord-

ing to which there exist certain pairs of events such that
their time interval ∆t keeps the same sign in all refer-
ence frames, i.e., remains invariant under transforma-
tions with any ϕ. This condition suffices to dismiss cases
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2○ and 4○. The Lorentz and Galilei groups then remain
as the only possible physical groups of relativity in space
time.

IV RELATIVITY GROUPS FOR THREE-

DIMENSIONAL SPACE

The additive parameter theorem allows for an easy
generalization of the preceding derivation to three-
dimensional space. We write the space transformation
as

(

t′

x
′

)

=

(

a(ϕ) b(ϕ)
c(ϕ) d(ϕ)

)(

t
x

)

= M(ϕ)

(

t
x

)

where a, b, c, d now are, respectively, 1× 1, 1× 3, 3× 1
and 3 × 3 matrices. All expressions of Sec. III up to
(III.9) then remain valid. However, the previous algebric
derivation, which needs no differentiation technique, be-
comes cumbersome for three-dimensional space and we
prefer an infinitesimal approch, which indeed is closer to
advanced methods relying on Lie algebras (this method,
of course, also works in the preceding one-dimensional
case).

Consider the multiplication law (III.2a). Deriving
with respect to ϕ′ and putting ϕ′ = 0, we obtain the
following equality

M ′(ϕ) = M(ϕ)M ′(0), (IV.1)

where the derived matrix is

M ′(ϕ) =

(

a′(ϕ) b′(ϕ)
c′(ϕ) d′(ϕ)

)

.

For ϕ = 0, according to (III.7), wee see that

M ′(0) =

(

0 β
γ 0

)

,

where

β = b′(0), γ = c′(0)

(do not forget that β and γ are 1× 3 and 3× 1 matrices,
that is, a “line” and a “column” vector, respectively). Re-
lationship (IV.1) now yields a set of differential equations

a′ = bγ, b′ = aβ

c′ = dγ, d′ = cβ

from which we deduce the equation

a′′ = βγa.

(βγ is the scalar product of the vectors β and γ.) The
function a therefore is of exponential type. The specific
solution to be selected is dictated by the parity property
(III.7) and the initial condition (III.2c). Similar argu-
ment apply to the initial computation of b, c, d. The
nature of the solutions depends on the sign of βγ, or its
vanishing. Since a scale change in the additive param-
eter multiplies βγ by a positive number, we are led to

consider the following cases.
1○ βγ = 1. We obtain

M(ϕ) =

(

coshϕ (sinhϕ)β
(sinhϕ)γ 1 + (coshϕ− 1)γβ

)

. (IV.2)

2○ βγ = −1. It suffices to replace in (IV.2) the hyper-
bolic functions by ordinary sine and cosine functions.
3○ βγ = 0. Integration yields:

M(ϕ) =

(

1 ϕβ
ϕγ 1 + 1

2
ϕ2γβ

)

.

The causality condition now eliminates case 2○ and im-
poses β = 0 in case 3○. We are left with two cases only:
a○ β = 0, leading to the three-dimensional Galilei trans-
formations

M(ϕ) =

(

1 0
ϕγ 1

)

,

where the vector γ defines the direction of the Galilean
boost.
b○ case 1○. To put the matrix (IV.2) in a more familiar
form, let us perform an arbitrary change of space co-
ordinates through some matrix T . The transformation
matrix M now becomes:

(

1 0
0 T

)

M(ϕ)

(

1 0
0 T−1

)

=

(

coshϕ (sinhϕ)βT−1

(sinhϕ)Tγ [1 + (coshϕ− 1)]TγβT−1

)

.

It is easily seen that a matrix T always exists such that
βT−1 is the transposed of the matrix Tγ. With conve-
nient units we now obtain

M(ϕ) =

(

coshϕ (sinhϕ)nt

(sinhϕ)n [1 + (coshϕ− 1)]nnt

)

,

which is a standard expression for the Lorentz transfor-
mation with rapidity ϕ, in the direction of the unit vector
n.

The question can be asked why we only found genuine
space-time tranformations (Lorentz or Galilei) as possi-
ble transformations between reference frames. Indeed, it
is clear that purely spatial transformations, namely rota-
tions in three-dimentional space, exist as well, and should
show up in our derivation of relativity groups. The an-
swer is to be found in the dismissal, after equation (III.5),
of the solution κ = 1.
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