Conférences données par Monsieur Jean-Marc LÉVY-LEBLOND professeur à l'Université de Paris VII et rédigées par un groupe d'enseignants:

Anne JAOUL
Claude MAITRE
Mireille ROUSSEAU
Madeleine SONNEVILLE

LES CAHIERS DE FONTENAY
N°8 PHYSIQUE

9.n.s. de fontenay-aux-roses septembre 1977
LES CAHIERS DE FONTENAY

N°8 PHYSIQUE

é.n.s. de fontenay-aux-roses septembre 1977
Directrices de la publication : Jacqueline BONNAMOUR
Huguette DELAVAULT

Secrétaire de Rédaction : Chantal GILLETTE

Réalisation Technique : Monique COMBELLES
Alain LAVAL
Claude PERRIN
Monique ROUSSEL

VOUS POUVEZ VOUS PROCURER LES "CAHIERS DE FONTENAY" à :
1'E.N.S. 5, rue Boucicaut 92260 FONTENAY AUX ROSES

Règlement : C.C.P. PARIS 9132-09
Chèque Bancaire à l'ordre de l'Intendante

SOMMAIRE

Madeleine SONNEVILLE
Relativité et relativités p. 9

Construction des formules de transformation de LORENTZ p. 31

Mireille ROUSSEAU
Appendice : Aspects dynamique de la théorie p. 49

Claude MAITRE
Electromagnétisme relativiste p. 53

Anne JAOUUL
Deux points de vue différents sur la relativité générale p. 69

Bibliographie p. 77
Dans le cadre des journées de formation continue organisées chaque année en Septembre par les Sections de Physique et Chimie de l'École, Monsieur LEVI-GERLOND, Professeur à l'Université de PARIS VII, a très aimablement accepté en 1976 de faire quelques conférences sur les problèmes posés par l'enseignement des théories de la relativité.

Dans un laps de temps si court, il fallait tout l'art et la présence d'un excellent professeur pour faire passer ce discours scientifique si riche de prolongements.

Ce sont des auditeurs attentifs qui ont tenté de retrouver ces conférences sans perdre, du fait de la mise en forme par écrit, ce langage imagé, ces réflexions en avant, qui permettent à un auditoire de faire sentir à un auditoire l'essentiel sans insister sur les détails, en particulier sur les calculs.

Cette nouvelle approche souvent fort originale peut inciter à la lecture d'ouvrages plus spécialisés, ou aider à la synthèse de connaissances préalables.
Fruit d’un travail d’équipe réunissant les enseignants de la Section de Physique de l’Ecole et des professeurs de l’Enseignement Secondaire, il peut être lu, non seulement par des professeurs de physique mais aussi par des professeurs de mathématiques, de philosophie et par tous ceux qui s’intéressent aux grands courants de la pensée contemporaine et aident ainsi certains à sortir du cadre de leur propre discipline.

Que Monsieur LEVY-LEBLOND qui a accepté de relire et corriger le manuscrit trouve ici l’expression de nos remerciements.

H. DELAVault

NECESSITÉ D’UNE REFONTE DES MÔDES
D’EXPOSITION DE LA PHYSIQUE MODERNE

L’enseignement d’une discipline scientifique s’appuie traditionnellement sur l’évolution chronologique de la science en question ; il s’agit donc d’un mode d’exposition à critique. Or, entre le moment où une science naît et celui où elle est enseignée, 50 ou 200 ans plus tard, les conceptions évoluent. Il est alors nécessaire de reformuler l’enseignement pour adopter un ordre LOGIQUE et non plus CHRONOLOGIQUE, en s’appuyant sur la pratique quotidienne de la science en question. Cette "reprise" doit être constante ; une telle attitude est évidemment plus exigeante, mais sûrement plus intéressante et féconde que le comportement traditionnel.
Il se trouve que ce processus de refonte du corps de doctrine fut automatique pour la plupart des théories de la physique classique, électromagnétisme compris ; ainsi, la mécanique n'est évidemment plus enseignée dans les termes où Newton la concevait.

Mais cette refonte permanente n'a pas été accomplie pour la physique "moderne" (relativité et mécanique quantique) qui continue à être enseignée et pensée pour l'essentiel dans les termes où elle fut formulée il y a 60 ou 70 ans.

Les causes de ce blocage, de ce retard, sont manifestes : elles résident dans l'industrialisation de la production scientifique. La division du travail nuit à la réflexion sur le contenu de la science :

1) division horizontale
 * entre spécialités qui ne communiquent pas les unes avec les autres.
 * entre enseignement et recherche.

2) division verticale entre ceux qui définissent les voies de recherche (mais ne cherchent pas) et les chercheurs (dont on n'attend pas qu'ils s'interrogent sur la science qu'ils pratiquent).

Les connaissances scientifiques s'accumulent, certes, mais sans être maîtrisées et les conceptions de la science tendent à se figer.

1. RELATIVITÉ ET RELATIVITES
 (rédigée par Madeleine SUNEVILLE)

LA relativité, trop souvent attribuée à Einstein, n'existe pas...

Ce qui existe, en revanche, c'est LE principe de relativité : on en connaît la formulation de Galilée, en 1632, dans le "Dialogue sur les deux grands systèmes du monde". Ce principe avait d'ailleurs déjà été exprimé, en des termes presque semblables, par des savants chinois, quinze siècles avant Galilée.

A ce principe de relativité, qui a donc une longue histoire, nous opposerons LES théories de la relativité.
1) l'une d'elle est la relativité "galiléenne"
2) une autre sera la relativité einsteinienne formulée en 1905

LE PRINCIPE DE RELATIVITÉ

A - ENONCE

Un énoncé très simple du principe de relativité est, par exemple, le suivant :

Il existe, sur le monde physique, des points de vue équivalents. C'est à dire que des conditions d'observation différentes conduisent, dans certains cas, à une même description du monde physique.

On peut l'énoncer de façon plus formelle :

Il existe des référentiels (systèmes de référence dans l'espace-temps) équivalents pour les lois de la physique, c'est à dire tels que les lois de la physique aient la même forme dans deux de ces référentiels.

Il est entendu qu'une loi physique dans un référentiel est une relation fonctionnelle F entre les valeurs de diverses grandeurs physiques dans ce référentiel. On a donc

$$ F(a, b, c, ...) = 0 $$

$sans$ dans le référentiel R

$$ F(a', b', c', ...) = 0 $$

$sans$ R' ;

la relation fonctionnelle F est la même ; en revanche, les valeurs "a" et "a'" d'une même grandeur physique peuvent être différentes dans R et R' : "a" et "a'" sont par exemple les distances d'un mobile à l'origine des espaces dans R et R' qui diffèrent par le choix de l'origine des espaces.

On a donc, en règle générale : $a \neq a'$, $b \neq b'$, $c \neq c'$,... mais une même relation.

Cette affirmation de l'existence de certaines classes de référentiels équivalents constitue donc un principe fort car leur existence n'a rien d'évident.

B - QUELS SONT CES REFERENTIELS EQUivalents ?

1 - Les référentiels "translatsés" :

Ils diffèrent par le choix de l'origine des temps ou des espaces (il s'agit d'une translation spatiale ou temporelle), les orientations des axes d'espace étant les mêmes.

L'équivalence de tels référentiels est liée au fait que les lois de la physique ne font intervenir que des distances ou des durées et jamais des positions ou des instants ; les origines des temps ou des espaces sont donc indifférentes.

Pour vérifier l'équivalence de tels référentiels, la translation de l'expérience dans le temps ou l'espace peut être plus commode à réaliser que celle du référentiel. Mais il importe évidemment de déplacer (dans l'espace par exemple) toute l'expérience et pas seulement un appareil de mesure : ne pas oublier de transmettre la Terre s'il s'agit d'une expérience sur la chute des corps !

A la limite, il faut évidemment transmettre l'univers entier et le principe de relativité n'aurait alors aucun intérêt puisqu'il affirmerait ici l'HOMOGENÉITÉ d'un univers vide.

L'intérêt du principe de relativité est donc, dans ce cas, lié à la possibilité, essentielle en physique, d'isoler des "mondes d'uns" plus ou moins importants, de négliger certaines influences devant d'autres et de ne considérer qu'une fraction convenablement choisie de l'univers comme "système physique".

2 - Les référentiels "tournés"

Ils diffèrent l'un de l'autre par l'orientation des axes d'espace. Le principe de relativité affirme donc ici les propriétés d'ISOTROPIE de l'espace.

Ces deux premières classes de référentiels équivalents n'ont été considérées que très tardivement en raison de leur trivialité.
3 - Les référentiels "bougés" :

en mouvement l'une par rapport à l'autre nous éviterons dans ce cas le terme de "translation" qui prêterait à confusion. C'est de cette classe de référentiels équivalents qu'on parle le plus souvent.

Le principe de relativité affirme ici qu'il existe au moins une certaine catégorie de mouvements relatifs entre référentiels qui n'affectent pas les lois de la physique.

Mais le principe de relativité reste abstrait tant qu'on ne précise pas les relations entre a et a', b et b' etc... C'est ce que feront, chacun de façon différente, les théories de la relativité qui indiquent comment se correspondent ces grandeurs quand on passe d'un référentiel à l'autre.

LES THÉORIES DE LA RELATIVITÉ

Elles indiquent ces règles de passage, plus particulièrement pour les grandeurs spatio-temporelles (longueurs et temps). Elles donnent donc des formules de transformation des coordonnées spatio-temporelles (positions et instants) lorsqu'on passe d'un référentiel R à un référentiel équivalent R' (translaté, tourné ou bougé par rapport à R).

On s'élancera ici à une dimension d'espace (les rotations ne seront donc pas considérées ; t désignera le temps et x l'abscisse, dans R ; t' et x' sont leurs homologues dans R').

A - POUR LES RÉFÉRENTIELS TRANSLATÉS

1 - dans l'espace on aura des formules de transformation du type

\[x' = x - a \]
\[t' = t \]

où a est la distance entre les points origine

2 - dans le temps, on aura de même

\[x' = x \]
\[t' = t - b \]

où b est le décalage horaire entre les horloges

B - POUR LES RÉFÉRENTIELS EN MOUVEMENT RELATIF

1 - Théorie de la relativité "galiéenne"

Les "transformations de Galilée" n'ont pas été écrites par Galilée qui ne disposait pas de l'outil analytique nécessaire et n'ont sans doute pas été formulées de façon explicite avant le 19ème siècle, en raison de leur apparente évidence.

Cette relativité galiéenne n'a pris d'intérêt qu'après les travaux d'EINSTEIN, lorsque l'on constata que ces formules étaient fausses : on s'est alors demandé qu'elles étaient les conséquences de la relativité galiéenne, en quoi elle différait de la nouvelle théorie, en quoi elle lui était semblable. C'est un exemple typique des processus de "refonte" cités plus haut : les questions de relativité ou d'invariance n'ont pris d'importance en physique que dans le cadre de la relativité einsteinienne ou dans celui de la mécanique quantique (alors que les invariances ont toujours existé) mais elles ont également acquis, par récurrence, de l'importance dans la physique classique. Et il est, à l'heure actuelle, très intéressant de repenser la mécanique classique et l'électromagnétisme au vu et au su de ces principes d'invariance. Cette refonte, processus quelque peu "bloqué" aujourd'hui pour les raisons évoquées plus haut mériterait d'être l'objet de plus d'intérêt.

Les formules de transformation de Galilée s'écrivent

\[x' = x - Vt \] où V est la vitesse uniforme
\[t' = t \] de R' dans R
Exemple 1 d'utilisation de ces formules

- soit la loi de NEWTON, décrivant le mouvement d'un point matériel P, supposé valable dans un référentiel R lié à la Terre, ayant par exemple son origine en O ; c'est le centre de la Terre

$$ f = m \frac{d^2x}{dt^2} $$

Exemple 2

- soit l'expérience classique sur l'induction électromagnétique.

Cherchons à l'interpréter, d'un point de vue microscopique, dans deux référentiels différents.

Dans le référentiel R du laboratoire, les électrons de la barre, animés de la vitesse \vec{V} du fait du mouvement de la barre sont soumis à la
force magnétique de LAPLACE-LORENTZ
\[F = q v \cdot B \]
d'où le sens du courant induit et le calcul de la f.e.m. induite.

Dans le référentiel R lié à la barre, les électrons sont au repos et ne subissent donc aucune force magnétique. Il semble donc qu'on doive en conclure à l'absence de courant induit et donc de f.e.m. induite.

Il y a donc un paradoxe en ce sens que, dans deux référentiels qui se déduisent l'un de l'autre par une transformation galiléenne, et qui doivent donc satisfaire au principe de relativité, on obtient deux situations physiques différentes (existence ou absence de courant). Mais ce paradoxe n'est qu'apparent car il se résoud fort bien, même en termes de relativité galiléenne. En effet :

Ecrivons la loi de LAPLACE-LORENTZ sous une forme généralisée, tenant compte de l'existence éventuelle d'un champ électrique. Alors :

- dans R, \[F = q (E + v \times B) \]
- dans R', \[F' = q (E' + v' \times B') \]

Les charges sont supposées invariantes ; on a vu que les forces doivent être invariantes par une transformation de GALILÉE : \[F = F' \]. Donc :

\[q (E + v \times B) = q (E' + v' \times B') \]

(la vitesse de la particule n'étant pas invariante, l'un au moins des deux champs doit varier)

Comme \[v' = v - V \] et comme cette égalité doit être maintenue pour \(v \) quelconque, on a nécessairement

\[q (E + v \times B) = q (E' + V' \times B' - v' \times B') \]

soit, en inversant :

\[E' = E + V' \times B' \]

Par une transformation de GALILÉE, les champs \(E \) et \(B \) sont donc pas invariants.

Et il est donc faux de croire que la transformation des champs soit une conséquence de la relativité einsteinienne. Néanmoins, en relativité einsteinienne, les formules de transformation seront plus complexes. L'interconnexion des champs électrique et magnétique existe en relativité galiléenne.

Revenons alors à l'expérience décrite plus haut.
Alors \(F = 0 \) (les électrons sont au repos par rapport à la barre) et \(v = V \). On aura donc

\[B = B' \]

et \(E = V \cdot B' \) car \(E = 0 \)

Et pour l'observateur lié à la barre, la force est \(F' = q (E' + v' \times B') = q E' = q V' \times B' \)

Les deux observateurs constatent donc bien que \(F = F' \). Ce qui change c'est le point de vue, la perspective : la force apparaît comme magnétique dans R et électrique dans R'; mais sa valeur est la même. Ce qui prouve que la chose importante ici n'est pas la description (électrique ou magnétique) qu'on donne des phénomènes, mais la valeur de la force sur laquelle les deux observateurs parviennent effectivement à se mettre d'accord. Il importe de bien comprendre tous les effets de la relativité en termes de perspective : les objets, c'est à dire ici les lois de la physique sont les mêmes ; seule leur apparence, ou la description qu'on en donne, diffère selon le référentiel. Il en sera de même par la suite en ce qui concerne les effets de la relativité einsteinienne (dilatation des durées et contraction des longueurs) ; ce ne sont que des effets de perspective.

Interprétation graphique de la théorie galiléenne

L'ensemble des événements (un lieu, un instant) est représenté sur un diagramme à deux dimensions.

Dans une telle représentation, un changement de référentiel sera un changement d'axes. Ainsi, pour les changements de référentiel qui laissent invariantes les lois de la physique:
Translation de l'origine des espaces

\[t' = t \]
\[x' = x - a \]

Translation de l'origine des instants

\[x' = x \]
\[t' = t - b \]

Transformation de Galilée

\[t' = t \]
\[x' = x - Vt \]

L'axe des abscisses est inégalement. L'axe des \(t' \), ensemble des événements ayant lieu en \(x' = 0 \) (donc à l'origine de \(R' \)) est tel que \(x = Vt \), c'est donc une droite passant par l'origine et de pente \(\frac{1}{V} \) dans l'ancien système d'axes.

Il faut oublier le caractère inévitablement euclidien du support (un plan spatial à 2 dimensions) sur lequel est tracé ce diagramme affine (représentant un espace-temps à 2 dimensions).

Attention : il s'agit d'un diagramme affine, c'est-à-dire que les coordonnées s'obtiennent par projections parallèles aux axes. Le plan \((x, t)\) n'est évidemment pas euclidien puisque la notion d'angle droit n'a aucun sens étant donné les natures hétérogènes des quantités portées sur les axes. Il n'y a pas davantage de distances. Donc : aucune signification n'est à attacher au fait que les axes \((x, t)\) aient été tracés orthogonaux.

Par ailleurs, on constate bien que la relation \(t' = t \) n'est pas représentée par des longueurs égales. Les unités sur les axes \(t \) et \(t' \) ne s'obtiennent pas en reportant une même longueur sur les 2 axes.
Contradiction entre la théorie de la relativité galiléenne et les équations de MAXWELL

Dans un référentiel où les équations de MAXWELL sont valables, la propagation de la lumière dans le vide s'effectue de manière isotrope (avec une vitesse $c = 300.000$ Kms/s).

Si on applique à cette vitesse particulière la loi galiléenne de composition des vitesses, il apparaît que ce référentiel doit être unique ; on lui donne le nom d'Ether.

Il est peu vraisemblable qu'il soit lié à la Terre. Or toute tentative pour mesurer les variations de la vitesse de la Terre dans l'Ether échoue, alors que cette vitesse varie, du fait du mouvement annuel de la Terre. On doit donc en conclure à l'inexistence de l'Ether, autrement dit les équations de MAXWELL sont valables dans tout référentiel.

Mais ces mêmes équations ne sont pas invariantes par les transformations de GALILEE.

Il faut donc sacrifier, pour lever cette contradiction, soit les équations de MAXWELL, soit la cinématique classique c'est à dire la théorie de la relativité galiléenne.

2 - Présentation graphique de la théorie "éinstenienne"

Einstein n'apporte pas quelconque principe nouveau ; la nouvelle théorie dit simplement que la concrétisation du principe de relativité sous la forme de la transformation de GALILEE est incorrecte. C'est donc une autre théorie pour illustrer le même principe

a) hypothèses

On exprimera d'abord que la vitesse de la lumière doit être la même dans les référentiels R et R'. Autrement dit, la ligne d'univers d'un photon, d'équation $x = ct$ dans R doit avoir la même équation $x'=ct'$ dans R'.

b) Questions d'unités et de constantes

Pour simplifier les schémas et les formules, on convient de chosir un système d'unités tel que la vitesse de la lumière soit l'unité de vitesse (par exemple l'unité de temps peut être l'année ; alors l'unité de longueur sera l'année - lumière)!

Bien entendu, on peut, à tout instant, repasser dans un système d'unité traditionnel (mètre et seconde) en reintroduisant c là où il faut, moyennant un peu d'analyse dimensionnelle.

c) Le changement de référentiel

Avec le choix d'unités tels que $c=1$, la ligne d'univers du photon sera, dans R, la bissectrice des deux axes (bissectrice définie comme le lieu des points tels que leurs distances affines aux 2 axes soient les mêmes)

Remarque : Il ne faut pas faire jouer aux constantes "fondamentales" de la physique moderne (h, c...) un rôle qu'elles n'ont pas : elles cessent d'apparaître dans les calculs dès lors qu'on les prend comme unités. Ainsi, en physique des hautes énergies où toutes les vitesses sont proches de c, on travaille avantageusement avec $c=1$; de même en mécanique quantique où toutes les quantités qui ont même dimensions que h sont précisément de l'ordre de h, il est commodé de prendre h comme unité. D'ailleurs, la physique classique au, plus simplement la géométrie montre main exemple d'une telle démarche (voir l'adoption des unités de surface aux unités de longueur compte-tenu de la loi reliant la côte et l'aire d'un carré).
L'axe des \(t' \) a pour équation \(x = Vt \) dans l'ancien système. Pour que la ligne d'univers du photon admette l'équation \(x' = t' \), il faut qu'elle soit aussi la bissectrice des deux nouveaux axes. On en déduit que l'axe des \(x' \) est le symétrique de l'axe des \(t' \) par rapport à la bissectrice du premier système d'axes. L'équation de l'axe des \(x' \) dans l'ancien système est donc \(t = 0 \).

On retrouve la limite galiléenne, après avoir rendu cette équation homogène : \(t - \frac{Vx}{c^2} = 0 \).

La vitesse \(c \) est alors un nombre très grand (ce qu'on exprime parfois abusivement en faisant "tendre \(c \) vers l'infini") et l'axe des \(x' \) a quasiment l'équation \(t = 0 \).

Il tend à se confondre avec l'axe des \(x \).

d) Relativité de la simultanéité

C'est la première conséquence majeure de la théorie de la relativité einsteinienne.

Soient deux événements \(M \) et \(N \) simultanés dans \(R \); ils ont lieu en \(x_1 \) et \(x_2 \) au même instant \((t_1 = t_2) \).

Le graphique montre immédiatement que \(t_1 \neq t_2 \), contrairement au cas galiléen où les axes \(x \) et \(x' \) étaient confondus.

Dans le cas galiléen la notion de simultanéité de deux événements est absolue, c'est à dire indépendante du référentiel, dans le cas einsteinien, elle est relative.

e) Étalonnage des axes de \(R \) et \(R' \)

On a vu que le plan sur lequel le diagramme est tracé n'est pas un plan euclidien; pour obtenir l'unité sur l'axe des \(t' \), on ne peut donc pas reporter, avec un compas, l'unité choisie sur l'axe des \(t \).

On va utiliser l'invariance (non démontrée ici) de la quantité \(s^2 = t^2 - x^2 \) par changement de référentiel. Notons simplement que cette invariance est compatible avec un certain nombre de points déjà acquis:
compatible avec l'invariance de c : Pour le photon d'équation $x = t$ dans R et $x' = t'$ dans R' on a

$$s^2 = t^2 - x^2 = 0$$
$$s'^2 = t'^2 - x'^2 = 0$$

et donc $s^2 = s'^2 = 0$.

compatible avec la limite galiléenne : en revenant à des notations homogènes :

$$s^2 = t^2 - \frac{x^2}{c^2}$$
si c est très grand on a sensiblement $s^2 = t^2$.

De même, $s'^2 = t'^2$. L'invariance de s^2 exprime que $t = t'$ dans le cas galiléen.

notons enfin que dans la géométrie euclidienne l'invariant est $x^2 + y^2 = x'^2 + y'^2$. Ici l'espace-temps est dit pseudo-euclidien = existence d'une norme quadratique non définie positive.

Étalonnons alors les axes :

En géométrie euclidienne l'unité sur l'axe des x' se déduirait de l'unité sur l'axe des x ou des t en utilisant le fait que le compas trace précisément l'ensemble des points tels que $x^2 + y^2 = x'^2 + y'^2 = 1$.

On voit que ces hyperboles ne coupent pas la droite $x = t$; il n'y a donc pas d'units sur cette droite qui ne peut constituer ni un axe des espaces ni un axe des temps — on n'atteint donc pas la vitesse c lorsque V croît. Pour un photon, il n'y a ni longueurs ni temps.

f) Contraction des longueurs

Ce n'est qu'une conséquence du caractère non absolu de la simultanéité.

Définitions d'abord le processus de "mesure d'une règle" = dans un référentiel donné l'opération consiste, à déterminer les abscisses des 2 extrémités de la règle, à un instant donné de ce référentiel.
Soit donc une règle unité immobile dans R ; les lignes d'univers de son origine et de son extrémité sont par conséquent les deux droites $x = 0$ et $x = 1$. Pour la mesurer dans R', il faut se placer à un instant t' déterminé, par exemple à $t' = 0$. L'origine et l'extrémité de la règle sont alors représentées par les points 0 ($x' = 0)$ et A de l'axe des x'. Étant donné la situation de l'hyperbole servant à l'étalonnage des axes, la longueur OA est manifestement inférieure à 1. D'où le "phénomène" de contraction des longueurs.

Bien entendu, cette contraction n'est qu'un effet de perspective lié au changement de point de vue, c'est à dire de référentiel. La règle ne raccourcit pas ! La seule vraie mesure, sans "parallaxe", est celle qu'on effectue dans le référentiel où la règle est immobile.

De même, une règle immobile dans R' et mesurée dans R donnerait lieu au même effet de contraction ; le rôle joué par les deux référentiels est le même.

g) Dilatation des durées

Les muons sont des particules instables créées par le rayonnement cosmique dans la haute atmosphère. Leur durée de vie τ_0 est de l'ordre de 10^{-6} seconde ; ces particules peuvent être observées dans les laboratoires d'altitude (2 ou 3000m) et leur vitesse V est très proche de celle de la lumière.

Étant donné que $\tau_0 = 10^{-6}$, ces particules devraient en moyenne parcourir une distance

$$L = vt = 10^{-6} \times 3 \times 10^8 = 300 \text{ m}$$

entre le lieu où elles sont créées et celui où elles se désintègrent. Le nombre d'entre elles qui parcourent une distance de plusieurs kilomètres est anormalement élevé par rapport à cette estimation. Ceci s'explique de la façon suivante :

Soit R le référentiel du laboratoire, x et t les coordonnées d'espace-temps du muon dans R.

Ce muon arrivant à la vitesse $V \approx c$ quasi constante, sa ligne d'univers est donc très proche de la ligne de lumière $x = t$.

L'événement "création du muon" étant représenté en 0, l'événement "disparition du muon" est représenté en A, sur sa ligne d'univers, de telle
sorte que ces deux événements soient séparés par une durée τ_0 dans la référentiel du muon ; en effet τ_0 est une durée propre, c'est à dire mesurée dans un référentiel tel que les deux événements O et A soient vus au même lieu, soit le référentiel R' du muon.

Or R' est tel que la ligne d'horizon du muon constitue l'axe x' (on en déduit l'axe x' par symétrie) -
Pour les observateurs de R, l'instant de A est τ et on a $\tau > \tau_0$ (voir figure) - Les observateurs du laboratoire doivent donc percevoir une durée de vie τ supérieure à $\tau_0 = 10^{-6}$s. Pour eux, la distance moyenne parcourue avant désintégration sera 10 et non pas $\frac{10}{v}$.

C'est le phénomène de dilatation des durées, cette dilatation n'étant bien entendu qu'apparente car le référentiel R' n'est pas le bon référentiel pour caractériser l'histoire du muon.

Remarque : la durée de vie d'une particule est toujours donnée dans son référentiel propre : c'est à cette seule condition qu'elle caractérise la particule - Dans la pratique cependant, c'est toujours τ qu'on mesure et on en déduit τ_0 en effectuant la correction "à rebours".

Les démonstrations courantes de la transformation de LORENTZ s'appuient sur la constance de la vitesse de la lumière ; c'est notamment ce qu'on a utilisé dans la présentation graphique précédente. Mais :

1) Ceci revient à établir la théorie de la relativité einsteinienne sur une propriété spécifique de l'électromagnétisme ; on jette donc un doute sur le contenu de la théorie car il semble qu'il y ait un lien privilégié entre l'électromagnétisme et la structure de l'espace - temps ; c'est ce qui se passe dans le mémoire d'EINSTEIN où la relativité de la simultanéité est introduite à partir de l'échelle de "TOPS" lumineux ; on est en droit de se demander alors ce que donneraient d'autres "types de TOPS".

Or tous les phénomènes physiques connus (gravitation, électromagnétisme, interactions nucléaires fortes et faibles) sont régis par la théorie de la relativité restreinte ; l'espace - temps semble avoir une certaine structure, indépendamment des phénomènes qui s'y passent et ceci se trouve considérablement obscurci par les présentations traditionnelles.

2) En outre, la constance de la vitesse de la lumière n'est pas vraie ! La théorie de la relativité montre qu'il peut exister, à côté des particules douées de masse, d'autres particules, de masse nulle, allant toujours à la même vitesse c quelle que soit leur énergie.
On dit donc habituellement : "c'est parce que le photon a une masse nulle que sa vitesse est c". Il vaudrait mieux dire : "Si le photon a une masse nulle, alors sa vitesse est c". Cette masse étant, à l'heure actuelle, sûrement inférieure à 10^{-60} gramme, sa vitesse approche donc c de très près, assez pour qu'on ne puisse pas la distinguer de c. Mais rien n'exclut qu'on puisse un jour mettre en évidence une masse non nulle pour les photons et les ralentir...

Alors, la quantité c, qu'on appelle usuellement "vitesse de la lumière" apparaît plutôt comme une constante théorique de structure qui ne mesure la vitesse du photon que si celui-ci a bien une masse nulle (chose impossible à prouver expérimentalement).

En résumé, la constance de la vitesse de la lumière constitue donc une base extrêmement fragile pour la théorie de la relativité einsteinienne. Il ne faut néanmoins pas en conclure que la théorie soit elle-même fragile : on verra plus loin qu'elle peut être assise sur des principes autrement plus solides que la nullité de la masse du photon.

De même, la théorie électromagnétique de MAXWELL fut primitivement élaborée à partir d'un éther, milieu élastique siège d'un champ de contraintes mécaniques. Mais en définitive, cette mécanique sera abandonnée car non conforme au fait que les ondes se propagent dans l'air ; les équations de MAXWELL n'en sont pas moins exactes et on leur donne aujourd'hui d'autres fondements.

3) La théorie de la relativité d'EINSTEIN risque fort, au même titre que la relativité galiléenne, d'être un jour remise en cause. S'il en est ainsi, il importe de bien savoir à quoi il faudra effectivement renoncer, dans notre conception du monde physique, lorsque la théorie cessera d'être satisfaisante. Il convient donc de rechercher les bases les plus profondes de la théorie au lieu de continuer à la fonder sur la constance de la vitesse de la lumière.

2. CONSTRUCTION DES FORMULES
DE TRANSFORMATION DE LORENTZ

(rédigée par Madeleine SONNEVILLE)

LES FORMULES DE TRANSFORMATION DE LORENTZ

NE DÉPENDENT QUE D'UN SEUL PARAMÈTRE

Le principe de relativité affirme donc qu'il existe des référentiels équivalents pour la formulation des lois de la physique. Sontent R (x, t) l'un d'eux et R' (x', t') un autre. Les formules de changement de référentiel seront donc du type

$$x' = F(x, t, a_1, ..., a_n)$$

$$t' = G(x, t, a_1, ..., a_n)$$

où F et G sont deux fonctions, à déterminer, des anciennes coordonnées
d'espace-temps (x et t) et d'un certain nombre de paramètres (a₁) qui spécifient la transformation par laquelle R et R' se correspondent. On ne connaît a priori ni le nombre, N, ni la signification physique de ces paramètres.

A - HYPOTHESE ZERO ET CHOIX DES ORIGINES

Faisons l'hypothèse que l'espace et le temps sont invariants par translation, autrement dit que les origines des temps et des espaces sont arbitraires pour l'expression des lois physiques.

Ceci revient à dire que les translations dans l'espace (x' = x + a et t' = t) et dans le temps (x' = x et t' = t + b) font partie des transformations considérées.

Cette hypothèse peut évidemment être discutée : elle ne constitue qu'une approximation locale, notamment en ce qui concerne le temps, valable sans doute sur les durées de l'ordre du million d'années ; elle n'est plus vraie à l'échelle de l'histoire d'un univers en expansion.

Cette hypothèse étant admise, on a donc un nombre N de paramètres au moins égal à 2 (a et b). Intéressons-nous alors aux transformations autres que les translations spatio-temporelles, en prenant le soin de prendre en compte les origines, c'est-à-dire de faire en sorte qu'un événement repéré en R par (x = 0, t = 0) le soit, dans R', par (x' = 0, t' = 0). Alors, ces transformations "restantes" ne contiendront plus les paramètres a et b et les fonctions f et g ne dépendront plus que de n = N - 2 paramètres. On aura donc les équations (A)

\[
\begin{align*}
x' &= f(x, t, a_1, a_2, \ldots, a_n) \\
t' &= g(x, t, a_1, a_2, \ldots, a_n)
\end{align*}
\]

telles que x' = 0 et t' = 0 pour x = 0 et t = 0

B - N EST AU PLUS ÉGAL À 1

Deux arguments sont en faveur de ce fait

1) L'existence des relations causales entre deux événements

Soit un événement origine O (x = 0, t = 0) et un événement E repéré par x et t dans R. Existe-t-il une transformation (c'est-à-dire un ensemble \(a_1, a_2, \ldots, a_n\)) telle que cet événement E admette des coordonnées arbitrairement choisies (x' et t') dans R' ? Les équations (A) sont alors à résoudre par rapport aux \(a_i\), pour des x, t, x', t' donnés. Il est clair que si n > 2, il n'y aura (en général) un (ou plusieurs) référentiel R' répondant à la question.

En d'autres termes, si l'on a par exemple t = 1 heure, il sera possible de trouver R' tel que t' = 2 heures, puis de trouver R'' tel que t'' = -1 heure. Toute causalité entre les événements O et E est donc exclue de ce fait. Or ces événements sont quelconques !

On a donc n ≤ 1

(n = 0 s'il n'y a pas d'autres transformations que les translations d'espace-temps)

2) Le principe de POINCARE

Il exprime le fait expérimental selon lequel la trajectoire d'un point matériel dans un référentiel est connue dès que sont déterminées la position initiale et la vitesse initiale, tandis que l'accélération n'est pas arbitraire. Un changement de référentiel s'interprète alors comme une modification des conditions initiales.

On peut donc toujours trouver un référentiel R' tel que les conditions initiales (position et vitesse) aient une valeur arbitrairement choisie, mais l'accélération ne peut pas être arbitrairement choisie, pas plus que les dérivées d'ordre supérieur.

Autrement dit, si on écrit

\[
\begin{align*}
x' &= f(x, t, a_1, a_2, \ldots, a_n) \\
\frac{dx'}{dt} &= f'(x, t, \frac{dx}{dt}, a_1, a_2, \ldots, a_n) \\
\frac{d^2x'}{dt^2} &= f''(x, t, \frac{dx}{dt}, \frac{d^2x}{dt^2}, a_1, a_2, \ldots, a_n)
\end{align*}
\]

et si ce système est envisagé par rapport aux inconnues \(a_i\), on trouvera les \(a_i\), pour x, t et \(dx/dt\) donnés, et pour x' arbitraire et \(dx'/dt\) arbitraire.

Ce qui donnerait n = 2, mais compte-tenu du choix des origines fait plus haut, ce nombre est restreint à n = 1 (si x = 0 et t = 0 ou à nécessairement x' = 0 qui n'est plus arbitraire).
LA NATURE DE L'ESPACE - TEMPS
ET LA FORME DES FORMULES DE TRANSFORMATION

soit donc "a" l'unique paramètre définissant la transformation
\(R \to R' \) — sa signification physique est inconnue pour l'instant.

A - HYPOTHESE 1 : HOMOGENEITE DE L'ESPACE - TEMPS

C'est une réutilisation de l'hypothèse zéro sous une autre forme.
Soit, en \((x, t)\) dans \(R \) un intervalle infinitésimal \((dx, dt)\). Les composantes de cet intervalle dans \(R' \) seront
\[
\begin{align*}
dx' &= \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial t} dt \\
dt' &= \frac{\partial g}{\partial x} dx + \frac{\partial g}{\partial t} dt
\end{align*}
\]
Si l'espace-temps est homogène, \(dx' \) et \(dt' \) ne dépendent ni de \(x \) ni de \(t \) et donc
\[
\frac{\partial f}{\partial x}, \frac{\partial g}{\partial x}, \frac{\partial f}{\partial t}, \frac{\partial g}{\partial t}
\]
de ne dépendent ni de \(x \), ni de \(t \) et sont donc des constantes.

Les fonctions \(f \) et \(g \) sont linéaires en \(x \) et \(t \)
soit
\[
\begin{align*}
x' &= H(a) x - K(a) t \\
t' &= L(a) t - M(a) x
\end{align*}
\]
(L'homogénéité résulte de l'hypothèse zéro sur le choix des origines)

Consequence : un point lié à \(R' \) (tel que \(x' = \text{est} \)te) vérifiera
\[
x = K(a) t + x'
\]
son mouvement est uniforme.
On sait donc désormais que les référentiels équivalents \(R \) et \(R' \) sont en mouvement uniforme l'un par rapport à l'autre. Ceci n'est pas une hypothèse mais découle de l'homogénéité de l'espace-temps.

Changement de paramètre
On voit que
\[
\begin{align*}
x' &= H(a) (x - Vt) \\
t' &= H(a) \left(L(a) t - M(a) t \right)
\end{align*}
\]
Posons
\[
\begin{align*}
M(a) &= u(V) \\
L(a) &= \lambda(V) \\
H(a) &= \gamma(V)
\end{align*}
\]
On aura
\[
\begin{align*}
x' &= \gamma(V) (x - Vt) \\
t' &= \gamma(V) (\lambda(V) t - u(V) x)
\end{align*}
\]
où ne subsistent que 3 fonctions à déterminer, du paramètre \(V \), au lieu des 4 fonctions de \(a \) présentes dans les équations (3).

Contre-Exemple 1 : modèle ne satisfaisant pas à l'hypothèse 1

Il satisfait aux hypothèses zéro, et aux suivantes, \((2, 3, 4)\). Mais le temps n'y est pas homogène ; il s'agit d'un modèle d'Univers en expansion oscillante
\[
\begin{align*}
x' &= x - V t \text{ sur } \frac{1}{t} \\
t' &= t
\end{align*}
\]
la transformation n'est pas linéaire ; \(t \) est une constante de l'Univers ("âge")

Ce modèle admet une limite singulière si
\[
\begin{align*}
x' = x - V t \\
t' = t
\end{align*}
\]

B - HYPOTHESE 2 : ISOTROPIE DE L'ESPACE

A trois dimensions, c'est l'invariance par rotation ; ici, elle se limitera à une invariance par renversement de l'orientation de l'axe des espaces.
Sont deux référentiels \(R \) et \(R' \) équivalents et caractérisés par \(V \) ; \(x \) et \(t \) étant les coordonnées d'un événement \(\mathcal{E} \) dans \(R \), ses coordonnées dans \(R' \) s'obtiennent par les équations (4).

Appelons \(R \oplus \) et \(R' \oplus \) les référentiels obtenus en inversant l'orientation de l'axe des abscisses \(x \) et \(x' \). L'isotropie de l'espace impose que \(R^{-} \) et \(R'^{-} \) soient eux aussi équivalents (gauche ou droite n'ont aucune signification intrinsèque, l'orientation des axes est arbitraire)

Donc on passera de \((-x, t)\) à \((-x', t')\) par des formules du type (6).
le paramètre n'étant plus Y mais U (à déterminer en fonction de V) soit, pour tout t et pour tout x.

\[
\begin{align*}
-x' &= \gamma (U) [-x - Ut] \\
t' &= \gamma (U) [\lambda (U) t + u (U)x]
\end{align*}
\]

En identifiant les 2 expressions de x' et t' :

\[
\begin{align*}
\gamma (V) &= \gamma (U) \\
V \gamma (V) &= -U \gamma (U) \\
\gamma (V) \lambda (V) &= \gamma (U) \lambda (U) \\
\gamma (V) \mu (V) &= -\gamma (U) \mu (U)
\end{align*}
\]

Donc $V = -U$, ce qui est conforme à l'intuition en inversant le sens de l'axe dans R, on change le signe de la vitesse de l'autre référentiel dans R.

- γ est une fonction paire de V
- λ est paire
- μ est impaire

Contrô-Exemple 2 : modèles ne satisfaisant pas à l'hypothèse 2

\[
\begin{align*}
x' &= e^{\frac{-2V}{2}} (x - Vt) & \text{où } e^{\frac{-2V}{2}} \text{ joue le rôle de } \gamma \text{ mais}
\end{align*}
\]

de même $x' = \frac{x - Vt}{1 + \rho V}$ et $t' = \frac{t - \frac{2V}{2}}{1 + \rho V}$

où le terme $(1 + \rho V)$ n'est pas une fonction paire de V.

C : HYPOTHÈSE 3 - L'ENSEMBLE DES TRANSFORMATIONS DE LORENTZ CONSTITUE UN GROUPE

Cette hypothèse est de loin la plus forte.

1. Remarquons au préalable que l'équivalence physique entre deux référentiels R et R' est naturellement une relation d'équivalence, au sens mathématique au terme R équivaut R (réflexivité)

2. Si R équivaut physiquement à R', alors R' équivaut physiquement à R (symétrie)

2. Si R et R' sont physiquement équivalents et s'il en est de même pour R et R'', alors R et R'' sont physiquement équivalents (transitivité)

2. Signification de cette hypothèse

soit \mathcal{T} une transformation de LORENTZ, c'est à dire une transformation par laquelle se correspondent 2 référentiels physiquement équivalents et soit (\cdot) l'ensemble des transformations de LORENTZ, muni de la loi "composition des transformations" notée \cdot. Alors cette loi devra

1) être interne c'est-à-dire que $\mathcal{T}_1 \in (\mathcal{T}), \mathcal{T}_2 \cdot \mathcal{T}_3 \in (\mathcal{T})$.

2) posséder un élément neutre c'est à dire que $\mathcal{T} = (\mathcal{T})$, telle que $\mathcal{T} \cdot \mathcal{T} = \mathcal{T}$.

3) Existe une transformation \mathcal{T}_0 telle que $\mathcal{T} = \mathcal{T}_0 \cdot \mathcal{T}$.

4) La nature associative de la loi de composition est automatique puisqu'il s'agit d'un ensemble de transformations et non pas d'un objet quelconque.

L'exigence de la loi de groupe ne fait donc que traduire mathématiquement le principe de relativité, c'est à dire l'existence de référentiels équivalents.
3 - Contre-exemples

cette ensemble de transformations n'a pas une structure de groupe : (la transformation T_0 existe, mais la loi n'est pas interne)

cette ensemble de transformations n'a pas une structure de groupe : (la transformation T_0 existe, mais la loi n'est pas interne)

contre exemple 2 Le développement au premier ordre en $\frac{1}{c^2}$ de la transformation de LORENTZ (voir p.41)

\[
\begin{align*}
x' &= (x - Vt) \left(1 + \frac{1}{2} \frac{V^2}{c^2}\right)
\end{align*}
\]

\[
\begin{align*}
t' &= t \left(1 + \frac{1}{2} \frac{V^2}{c^2}\right) - \frac{Vx}{c^2}
\end{align*}
\]

ne correspond pas à une structure de groupe

4 - Qu'implique la loi de groupe?

a) la transformation identité est une transformation de LORENTZ

T_0 correspond à $x' = x$ et $t' = t$; elle correspond donc évidemment à $V = 0$. Puisqu'elle fait partie de (G'), on a :

\[
\begin{align*}
\gamma (0) &= 1 \\
\lambda (0) &= 1 \\
\mu (0) &= 0
\end{align*}
\]

b) la transformation inverse est une transformation de LORENTZ. Or, en inversant les équations (6) on trouve

\[
\begin{align*}
x &= \frac{1}{\gamma(V)} \left(1 - V \frac{\gamma(V)}{\lambda(V)}\right) \left(\frac{1}{\gamma(V)} (x' + \frac{V}{\gamma(V)} x')
\end{align*}
\]

\[
\begin{align*}
t &= \frac{1}{\gamma(V)} \left(1 - V \frac{\gamma(V)}{\lambda(V)}\right) \left(\frac{1}{\gamma(V)} t' + \frac{V}{\gamma(V)} x'
\end{align*}
\]

Il doit donc exister un paramètre W, caractérisant la transformation $R' \rightarrow R$, tel que ce qui s'écrive

\[
\begin{align*}
x &= \gamma(W) (x' - W t') \\
t &= \gamma(W) (\lambda(W) t' - \mu(W) x')
\end{align*}
\]

doù les conditions portant sur l'identité des termes en t'

\[
W = -\frac{V}{\gamma(V)} \quad \text{et} \quad \lambda(W) = \frac{1}{\gamma(V)}
\]

donc on déduit une équation fonctionnelle en λ

\[
\lambda \left(1 - \frac{V}{\gamma(V)}\right) = \frac{1}{\gamma(V)}
\]

Remarquons qu'il suffit de déterminer une fonction λ pour des arguments V positifs pour en déduire la fonction pour les arguments négatifs.

Effectuons le changement de variable défini par :

\[
Z(V) = \frac{V}{\gamma(V)} \quad \text{alors l'équation fonctionnelle s'écrit :}
\]

\[
Z(-Z(V)) = -V \quad \text{ou} \quad Z(V) = -Z^{-1}(-V)
\]

La condition $Z(-Z(V)) = -V$ ne peut être satisfaite que si la représentation graphique de $Z(V)$ est symétrique par rapport à la seconde bissectrice

En effet si A, de coordonnées V et $Z(V)$ est un point de la courbe, le point B d'abscisse $-Z(V)$ et d'ordonnée $-V$ symétrique de A par rapport à la seconde bissectrice doit être sur la représentation graphique de $Z(V)$ puisque $Z(-Z(V)) = -V$
En outre, puisque \(\lambda(V) \) est paire, \(Z(V) \) est impaire ; donc la représentation graphique est symétrique par rapport à 0 donc aussi par rapport à la première bissectrice.

On sait par ailleurs que \(\lambda(0) = 1 \). La seule possibilité est donc

\(Z(V) = V \) soit \(\lambda(V) = 1 \)

On en déduit que \(W = - V \); le paramètre de la transformation \(R' \rightarrow R \) est donc \(- V\).

Exploitons alors l'identité des termes en \(x'\):

\[
\gamma(W) = \gamma(-V) = \gamma(V) = \frac{1}{\gamma(V)} \left[1 - \gamma \left(\frac{V}{\gamma(V)} \right)^{-1} \right]
\]

\[
\left(\frac{\gamma(V)}{V} \right)^2 = 1 - \gamma \left(\frac{V}{\gamma(V)} \right) = 1
\]

La condition - u (W) = \(\frac{u(V)}{\gamma(V)} = u(V) \) est automatiquement satisfaite puisque \(V = - W \) et que \(u \) est impaire

c) La loi de composition est interne. Faisons se succéder deux transformations, de paramètre \(V_1 \) et \(V_2 \) - On aura :

\[
\begin{align*}
\gamma'(V_1) & \cdot \gamma'(V_2) = \gamma'(V_2) \cdot \gamma'(V_1) \\
&\quad \left[t - \mu(V_1) \cdot x \right] \\
&= \gamma(V_2) \cdot \gamma(V_1) \cdot \left[t - \mu(V_1) \cdot x \right]
\end{align*}
\]

soit :

\[
\begin{align*}
x'' &= \gamma(V_2) \cdot \gamma(V_1) \cdot \left[1 + \mu(V_1) \cdot V_2 \right] \cdot \left(x - \frac{V_1 + V_2}{1 + V_1 \cdot V_2} \cdot t \right) \\
t'' &= \gamma(V_2) \cdot \gamma(V_1) \cdot \left[t - \frac{V_1 + V_2}{1 + V_1 \cdot V_2} \cdot x \right]
\end{align*}
\]

si c'est une transformation de \(\text{LORENTZ} \), on doit trouver \(\tilde{t} \) telle que

\[
x'' = \gamma(\tilde{t}) \cdot (x - \tilde{t} \cdot t) \\
t'' = \gamma(\tilde{t}) \cdot (t - u(V) \cdot x)
\]

Et donc

\[
\gamma(\tilde{t}) = \gamma(V_1) - \gamma(V_2) \cdot \left[1 + \mu(V_1) \cdot V_2 \right] = \gamma(V_1) \cdot \gamma(V_2)
\]

soit

\[
\gamma(\tilde{t}) = \gamma(V_1) \quad \text{les arguments} \ V_1 \ et \ V_2 \ \text{étant quelconques, nous devons avoir} \quad \frac{u(V)}{V} = \text{constante (notée} \ a)\]

Donc:

\[
\gamma(\tilde{t}) = \frac{1}{\sqrt{1 - a V^2}} \quad \text{(signe + car} \ \gamma(0) = 1)\]

Et enfin

\[
x' = \frac{x - V t}{\sqrt{1 - a V^2}} \\
t' = \frac{t - a V x}{\sqrt{1 - a V^2}}
\]

Par ailleurs, on obtient

\[
\tilde{t} = \frac{V_1 + V_2}{1 + a V_1 V_2}
\]

Le nombre \(a \) dépend évidemment du système d'unités. Sa valeur numérique est sans intérêt ; seul importe son signe ou sa nullité éventuelle

\[
\text{cas} \ a = 0 \quad \text{Alors} \quad \{ x' = x - V t \}
\]

C'est la transformation de \(\text{GALILEE} \).

\[
\text{cas} \ a < 0 \quad \text{On peut alors ÉCRIRE} \quad a = \frac{1}{2} \quad \text{d'où l'expression classique de la transformation de \(\text{LORENTZ} \). Mais on ignore de quoi "c" est la vitesse et rien ne garantit qu'il existe dans la nature des objets de vitesse "c".}
\]

\[
\text{c est une constante de structure de l'espace-temps}
\]

\[
\text{cas} \ a < 0 \quad \text{Notons} \ a = \frac{1}{2 K^2} \quad \text{où} \ K \text{est une vitesse. Alors}
\]

\[
x' = \frac{x - V t}{\sqrt{1 + V^2 / K^2}} \\
t' = \frac{t + V x / K^2}{\sqrt{1 + V^2 / K^2}}
\]
D - HYPOTHESE 4 : EXISTENCE DE LA CAUSALITÉ

Il existe des intervalles dont le signe de la composante temporelle est invariant ; autrement dit des couples d'événements tels que l'énoncé "B a lieu après A" est intrinsèque.

Alors

si $a = 0$ le temps étant invariant, l'énoncé "B a lieu après A" est intrinsèque pour tous les couples d'événements.

si $a < 0$: soit A l'événement origine et B l'événement (x, t). On peut toujours trouver V tel que t soit négatif si t est positif.

La causalité n'existe pas.

cas $a > 0$ On doit avoir $1 - \frac{v^2}{c^2} > 0$, donc $|V|$ est bornée par c.

Pour $t > 0$, la valeur de $|V|$ nécessaire pour rendre t négatif est extérieure à l'intervalle $[0, c]$. La causalité existera et ce cas convient donc.

D'où les divers types d'intervales : du genre espace et du genre temps

si $\frac{AX}{AT} > c$ genre espace
pas de causalité avant et après interchangeables

si $\frac{AX}{AT} < c$ genre-temps
la causalité existe

Représentation graphique de l'espace-temps

Soit un événement origine 0 et un référentiel R dans lequel tout événement E est représenté par ses coordonnées x et t dans le plan.

Relativement à cette origine, l'ensemble des événements s'ordonne en diverses classes qui régissent le plan.

Les événements dont les points représentatifs sont sur les droites $x = \pm c$ sont reliés causuellement à l'événement origine. On dit qu'ils appartiennent au "cône de lumière" en ce sens que le signal qui les relie peut être de nature électromagnétique (si c représente bien la vitesse de la lumière).

Les événements des régions I et II sont tels que $|x| < c$ - L'intervalle entre l'événement considéré et l'événement origine est du genre temps. La relation causale est possible entre eux, la région I constitue le futur absolu de l'événement origine - quel que soit le référentiel, l'événement E sera après l'événement origine, bien que l'instant t qu'on lui attribue dépende du référentiel. De même II est le passé absolu de l'événement origine.
Les événements de la région (11) ne peuvent être en relation causale avec l'événement origine car $|\frac{x}{c}| > c$. L'ordre dans lequel se succèdent les événements O et E varie avec l'observateur. On ne trouve jamais un référentiel tel que les événements aient lieu au même endroit. On est dans l'ailleurs absolu. Inversement, dans (11) on peut trouver un référentiel tel que les événements aient lieu au même endroit.

Lien avec le cas galiléen

Si c apparaît comme une quantité très grande, la région (11) dégénère car le cône de lumière s'aplatis sur l'axe des x. L'ailleurs absolu est réduit au présent et donc, à part les événements simultanés à l'événement origine, tous les autres événements sont soit du passé, soit du futur et ceci de façon absolue. On voit donc que l'espace-temps galiléen se distingue de l'espace-temps galiléen par le fait qu'il y existe, une large classe d'événements sans relation causale avec un événement origine. La causalité est donc beaucoup plus forte en physique galiléenne.

E - LE CONCEPT DE VITESSE EN CINÉMATIQUES GALILÉENNE ET EINSTEINIENNE

Récuprons les formules de transformation de LORENTZ avec $c = 1$

$$x' = \frac{x - Vt}{\sqrt{1 - \frac{V^2}{c^2}}} \quad t' = \frac{t - \frac{V}{c}x}{\sqrt{1 - \frac{V^2}{c^2}}}$$

Soit alors

$$\frac{\xi'}{\gamma} = \frac{1}{\sqrt{1 - \frac{V^2}{c^2}}} \quad \frac{\eta'}{\gamma} = \frac{V}{\sqrt{1 - \frac{V^2}{c^2}}}$$

On a notamment $\xi'^2 - \eta'^2 = -1$ et on peut poser $\xi = \gamma \chi$ et $\eta = \gamma \psi$. D'où

$$\begin{cases}
 x' = \gamma \chi x - \gamma \psi t \\
 t' = \gamma \psi t + \gamma \chi x
\end{cases}$$

Donc par rapport à l'espace euclidien, les transformations sont "presque" des rotations : ce sont des transformations hyperboliques.

Intérêt de cette écriture

On a vu qu'en composant 2 transformations de LORENTZ de paramètres V_1 et V_2 on obtenait une transformation de paramètre

$$\tilde{V} = \frac{V_1 + V_2}{1 + \frac{V_1}{2} - \frac{V_2}{2}}$$

Avec $V = \frac{\omega}{c} = \theta \varphi (|V| + 1)$

On aura

$$\tilde{V} = \theta \varphi = \frac{V_1 + V_2}{1 + \gamma V_1 \gamma V_2} = \frac{\gamma V_1 \gamma V_2}{1 + \gamma V_1 \gamma V_2}$$

et donc $\varphi = \gamma V_1 + \gamma V_2$

Lorsqu'on compose 2 transformations de LORENTZ, le paramètre est additif alors que V ne l'est pas.

φ est donc le bon paramètre pour étiqueter une transformation de LORENTZ. Ne pas se servir de φ pour cet usage est aussi absurd que de refuser d'utiliser les angles pour les rotations. L'usage des paramètres V est donc mieux adapté et c'est le cas du groupe des rotations dont le paramètre additif est l'ANGLE ; pour le groupe de LORENTZ, ce paramètre est φ, la rapidité.

Vitesse galiléenne et vitesse einsteinienne

Dans le cas galiléen, le concept de vitesse recouvre deux propriétés bien distinctes

1) C'est d'abord le taux de variation temporelle de la position $V = \frac{dx}{dt}$

2) Lors de la composition de 2 mouvements, ce paramètre est additif $(\tilde{V} = V_1 + V_2)$

Il s'ensuit automatiquement que les valeurs de ce paramètre décrivent la droite réelle.
Lorsqu'on passe en cinématique einsteinienne, rien ne garantit que ces 2 propriétés continueront à être portées par le même concept. En effet :

1) La propriété 1 est bien toujours celle de la grandeur appelée vitesse \(V = \frac{dx}{dt} \).

2) Mais la grandeur additive (et qui prend toute valeur réelle) n'est plus \(V \) mais \(\wp \).

Un faux paradoxe

Ce qui démystifie le pseudo-paradoxe selon lequel

\[C + \text{vitesse finie} = c \]

En effet ce sont les \(\wp \) qui s'ajoutent pour \(V = c \) on a \(\wp \) infini et par conséquent, en ajoutant les \(\wp \) on a : \(\wp \) infini + \(\wp \) fini = \(\wp \) infini ce qui n'a plus rien de paradoxal

A la limite galiléenne, on a par ailleurs, avec \(V = c \) th \(\wp \) et \(V < c \) :

\[\text{th} \ wp = 1 \quad \text{donc} \quad \wp = 1 \quad \text{et} \quad \text{th} \ wp = \wp \]

Il n'y a plus de distinction des concepts.

Cet approche de la relativité et les relations de Lorentz elles-mêmes ne se préoccupent que des coordonnées spatio-temporelles des événements et de leur transformation d'un référentiel à un autre. Or dans "les usines à relativité" que sont des laboratoires tels que le CERN, munis de puissants accélérateurs, toutes les mesures faites pour caractériser des particules portent sur des énergies et des quantités de mouvement. Une autre introduction de la relativité peut se faire à partir de ces grandeurs. Notre but ici n'a pas été de traiter simultanément les deux approches mais on trouvera en appendice une ébauche de la démarche suivie dans une perspective dynamique.
APPENDICE :

ASPECTS DYNAMIQUES DE LA THÉORIE
(rédigée par Mireille ROUSSEAU)

En théorie de GALILEE quantité de mouvement et énergie s'expriment par :

\[\vec{p} = m \vec{v} \]
\[\mathcal{E} = \frac{1}{2} m v^2 + U \]

\(\vec{v} \) étant la vitesse, \(m \) la masse, \(\mathcal{E} \) l'énergie interne de la particule.

Ces concepts sont-ils généralisables dans le cadre de la théorie einsteinienne ? Il semble que oui puisque l'existence de la pression de radiation prouve la présence d'énergie et d'inertie dans le champ électromagnétique.

Définissons l'inertie \(I \) par la relation :

\[\vec{J} = I \vec{v} \]

(1)
On peut aussi écrire les deux relations suivantes :
\[v = \frac{dE}{dp} \quad \text{et} \quad \frac{dL}{dE} = \frac{\alpha}{\beta} dE \ \text{ou} \ \alpha = \frac{1}{1 - \alpha v^2} \]

De ces trois relations de base il est possible de déduire \(p, E, L \) en fonction de \(v \) puisque l'on dispose de trois relations pour quatre inconnues.
Il suffit d'écrire :
\[dp = \beta \frac{dv}{v} + v \frac{dE}{E} = \frac{dE}{v} + \alpha v \frac{dv}{v} \]
soit
\[\frac{dp}{p} = \frac{dv}{v} + \alpha \frac{dv}{1 - \alpha v^2} \]
et donc
\[p = \frac{cte}{\sqrt{1 - \alpha v^2}} \]
\[I = \frac{cte}{\sqrt{1 - \alpha v^2}} \]
\[E = \frac{\sqrt{1 - \alpha v^2}}{a} \]

Ces trois expressions peuvent encore s'écrire :
\[p = \sqrt{\frac{mv}{1 - v^2/c^2}} \]
\[I = \frac{m}{\sqrt{1 - v^2/c^2}} \]
\[E = \frac{mc^2}{\sqrt{1 - v^2/c^2}} \]

On peut en déduire la relation fondamentale invariante de la dynamique relativiste :
\[E^2 - p^2 c^2 = m^2 c^4 \]
ou dans un système d'unités plus commode où \(c = 1 \)
\[E^2 - p^2 = m^2 \]

Ce qui revient à dire que la longueur du quadrivecteur impulsion-énergie est une quantité invariante par changement de référentiel, donc indépendante de la vitesse de la particule envisagée.

C'est cette relation qui permet des calculs simples sur les réactions nucléaires, alors qu'un calcul par transformation de LORENTZ deviendrait vite fastidieux.

Prenons comme exemple la production d'un antiproton par choc de deux protons :
\[p + p \rightarrow \bar{p} + p + p + p \]
et cherchons quelle est l'énergie minimale \(E \) nécessaire à un proton visant un autre proton cillé immobile pour qu'il y ait création d'un antiproton.
On est au seuil de la réaction si, dans le référentiel du centre de masse, les trois protons et l'antiproton obtenus après l'interaction sont au repos, soit dans ce référentiel :
\[E = E' = 4M \]
la longueur de leur quadrivecteur impulsion-énergie est donc : \(4Mc^2 \)
Or avant la réaction, dans le référentiel du laboratoire, on pouvait calculer la longueur du quadrivecteur impulsion-énergie pour les deux protons de base, soit :
\[(E_E)^2 - (p_p)^2 + E + M = p^2 = 2M (E + M) \]

et

grandeur invariante par passage au référentiel du centre de masse.

Il suffit de se reporter au hamiltonien et aux équations de HAMILTON :
\[\dot{q} = \frac{\partial H}{\partial p} \quad \dot{p} = -\frac{\partial H}{\partial q} \]
On peut aussi le vérifier dans le cas galiléen.

L'inertie est variable avec la vitesse et ne doit pas être confondue avec la masse \(m \) qui est quelque chose d'intrinsèque : la masse \(m \)
correspond à l'inertie au repos ; il est donc redondant de parler de "masse au repos".

On connaît bien l'état du système initial dans le référentiel du laboratoire, l'état final dans celui du centre de masse. C'est ce passage d'un référentiel à l'autre qui serait vite inextricable par transformation de LORENTZ.
Pour finir de résoudre le problème, il nous suffit de remarquer qu'au cours de l'interaction, il y a eu conservation de l'énergie totale du système et de sa quantité de mouvement totale, donc de la longueur du quadri vecteur correspondant, soit :

\[2M (E + H) = (4M)^2 \]
\[E = 7M \] soit une énergie cinétique \[E_c = 6M \]

Nous avons été amenés à distinguer ici les grandeurs invariants (par changement de référentiel) et les grandeurs conservées au cours de l'interaction certaines pouvant appartenir aux deux catégories. Dès lors il est sans doute bon de dresser un tableau comparatif des grandeurs invariantes et des grandeurs conservées en relativités galiléenne et einsteinienne

<table>
<thead>
<tr>
<th>grandeur</th>
<th>GALILÉE</th>
<th>EINSTEIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>énergie</td>
<td>non invariante - conservée</td>
<td>non invariante - conservée</td>
</tr>
<tr>
<td>masse</td>
<td>invariante - conservée</td>
<td>invariante - conservée</td>
</tr>
<tr>
<td>énergie inérrne</td>
<td>invariante - conservée</td>
<td>invariante - conservée</td>
</tr>
<tr>
<td>masse</td>
<td>invariante - non conservée</td>
<td>invariante - non conservée</td>
</tr>
<tr>
<td>énergie</td>
<td>invariante - non conservée</td>
<td>invariante - non conservée</td>
</tr>
</tbody>
</table>

On constate sur ce tableau que dans le cas galiléen il existe une quantité indépendante \((U) \) de plus que dans le cas einsteinien, mais une loi de conservation de plus. Il y a donc autant de contrainte dans l'une et l'autre théorie.

De plus il faut noter que l'inertie est une "grandeur charnière" entre les deux théories : dans l'une elle s'identifie à la masse, dans l'autre à l'énergie.

3. ELECTROMAGNÉTISME RELATIVISTE

(rédigée par Claude MAITRE)

LES EQUATIONS DE MAXWELL

Le but de cet article est de montrer comment, Maxwell a eu l'idée d'ajouter un terme à une série d'équations déjà implicitement connues, et comment s'est posé, à partir de ce moment-là seulement, le problème de la relativité einsteinienne. Ce terme est celui qu'on appelle le "courant de déplacement" (qui n'a d'ailleurs rien à voir avec un courant).

Faisons d'abord le point sur ce que l'on connaissait jusqu'alors en électromagnétisme. On savait que :

1. les sources de champ électrique sont les charges, ce qu'on traduit par :

\[\nabla \times E = \rho \ \text{(charges)} \]
(1) \(\text{div} \vec{E} = \frac{1}{\varepsilon_0} \varphi \) où \(\varphi \) est la densité de charges électroniques.

(2) \(\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \)

(3) le phénomène d'induction, connu depuis 1830, se traduit par :

(4) \(\nabla \times \vec{B} = \mu_0 \vec{J} \)

Cette équation traduit l'absence de pôle magnétique isolé. Nous en reparlerons plus loin.

(4) les sources de champ magnétique sont les courants électriques (AMPERE, OERSTED 1820) :

L'hypothèse d'AMPERE consiste à dire que seuls ces courants sont des sources, et qu'il n'existe pas de charges magnétiques. Dans le cas d'un aimant, le champ magnétique est dû à des courants microscopiques qui y circulent ; ces courants sont ceux des électrons atomiques.

Nous utilisons ici une notation moderne (div \(\vec{E} \) ou \(\text{grad} \cdot \vec{E} \)) alors que MAXWELL écrivait encore \(\frac{\partial \varphi}{\partial t} + \frac{\partial \vec{E}}{\partial t} \), ce qui rend l'écriture illisible au niveau même de la notation. Nous sommes familiarisé avec la notation div, mais non avec les notations relativistes minkowskiennes quadridimensionnelles, encore plus condensées, qui effectuent par rapport à l'écriture classique le même type de condensation que celle-ci par rapport à l'écriture cartésienne. On a là un exemple d'évolution du formalisme et de l'écriture, ce qui est très intéressant dans l'histoire de la physique. On s'aperçoit que les changements d'écriture recouvrent des changements de concepts qui ne sont pas toujours explicites. Le passage de \(\frac{\partial \varphi}{\partial t} + \frac{\partial \vec{E}}{\partial t} \) à \(\text{grad} \cdot \vec{E} \) montre qu'il s'agit véritablement d'une analyse vectorielle, que \(\vec{E} \) est un vecteur de même que \(\varphi \), et qu'on forme avec eux un scalaire ; en d'autres termes, c'est toute l'invariance de la théorie par les rotations spatiales qui est mise en évidence par cette notation. Ce caractère l'apparente pas directement à l'écriture cartésienne. Il y a donc dans cette évolution de la notation un véritable approfondissement de la pensée.

Le même phénomène se produit lorsqu'on évolue de cette notation où les aspects spatiaux et temporels sont séparés, à une écriture quadridimensionnelle qui révèle les propriétés de transformation du champ électromagnétique sous les transformations de LORRENTZ. D'un point de vue pédagogique, il est peut-être bon d'insister sur le fait que les notations ne sont pas neutres et ne relèvent pas seulement de questions de pure commodité.

Ces quatre expressions étaient donc connues avant MAXWELL. Cependant il faut, pour que la quatrième équation soit exacte, que \(\nabla \cdot \vec{J} = 0 \), autrement dit, que le courant électrique soit conservé. On peut donner des exemples où cette condition n'est pas remplie.

Exemple : On considère une sphère recouverte d'un matériau radioactif émetteur \(\alpha \). L'émission est supposée radiale. Il existe donc, sortant de cette sphère, un courant radial. On s'attend donc à l'existence d'un champ magnétique.

Nous allons tenter de déterminer les caractéristiques de \(\vec{B} \) à partir d'arguments de symétrie spatiale.
La situation spatiale de l'exemple possède la symétrie sphérique. Le champ vectoriel créé ne peut donc être que radial. Supposons qu'en un point M quelconque \(\mathbf{B} \) ne soit pas radial. Lors d'une rotation autour d'un axe diaméral passant par M (fig.1), le champ \(\mathbf{B} \) décrit un cône, alors que le système source est inchangé. Il y a contradiction avec le principe selon lequel la symétrie des causes doit se retrouver dans la symétrie des effets : donc \(\mathbf{B} \) ne peut être que radial et son module ne dépend pas de la distance de M au centre de la sphère.

D'autre part, le champ magnétique est un pseudovecteur, ce qui lui confère certaines propriétés bien particulières afin de subir la réflexion (voir annexe). Imaginons un miroir coupant la sphère par un plan diaméral passant par M (fig.2). \(\mathbf{B} \) est donc parallèle au miroir. L'image de source est encore inchangée en tant qu'objet géométrique (sphère) mais aussi en tant que source physique (les charges électriques sont invariantes par réflexion).

Or \(\mathbf{B} \), parallèle au miroir, est renversé par réflexion. On retrouve le même paradoxe que précédemment, donc \(\mathbf{B} \) est nul ce qui est incompatible avec \(\text{rot} \mathbf{B} = \mu_0 \mathbf{J} \) car \(\text{div} \mathbf{J} \) n'est pas nul. L'équation (4) est donc incorrecte dans ce cas.

Il faut ici assurer la conservation totale de la charge, bien que la charge de la sphère diminue. L'équation de conservation de la charge est :

\[
\frac{\partial \phi}{\partial t} = \frac{\partial \mathbf{J}}{\partial t} \cdot \mathbf{E} + \frac{\partial \mathbf{D}}{\partial t} \cdot \mathbf{J}
\]

où \(I \) est le courant sortant et \(q \) la charge interne. Ceci reste valable pour n'importe quel volume.

Soit \(\mathbf{J} \) le vecteur densité de courant :

\[I = \text{flux de } \mathbf{J} = \int \int \int \mathbf{J} \cdot \mathbf{dv} = - \frac{\partial \mathbf{D}}{\partial t} \int \int \mathbf{E} \cdot \mathbf{dv} \]

\[\Rightarrow \nabla \cdot \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \cdot \mathbf{J} = 0 \]

On peut se demander quel rapport existe entre cette équation de conservation et la relativité. La conservation locale de la charge n'est pas imposée par la théorie galiléenne. On peut imaginer un mécanisme parfaitement compatible avec un espace-temps galiléen, dans lequel la charge se conserve globalement dans l'univers, mais non localement : une particule chargée disparaît en un point, par exemple elle se désintègre en particules non chargées ; si, au même moment, ailleurs dans l'espace est créée une particule chargée, la charge totale est conservée.

La difficulté vient de la simultanéité des événements, possible dans un espace-temps galiléen. Mais l'espace-temps est einsteinien et la simultanéité n'est possible que dans un référentiel et non dans les autres, à moins que les déplacements (apparition et disparition de la charge) ne soient synchrones. La conservation doit donc être locale.

Ceci confirme la nécessité de remplacer \(\nabla \cdot \mathbf{J} = 0 \) (imposée par l'équation (4) sous sa forme prémaxwellienne) par :

\[\nabla \cdot \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \cdot \mathbf{J} = 0 \]

Cette expression peut d'ailleurs s'écrire en notation einsteinienne en utilisant le quadrivecteur densité de charge et de courant :

\[\mathbf{\Phi} + \mathbf{J} = 0 \]

\[\mathbf{\Phi} = \left(\begin{array}{c} \Phi^t \\ \Phi^\mathbf{J} \\ \Phi^\mathbf{D} \\ \Phi^\mathbf{E} \end{array} \right)
\]

\[\mathbf{\Phi} = \nabla \cdot \mathbf{J} \]

\[\mathbf{\Phi} = \text{pseudo-produit scalaire dans un espace à quatre dimensions.} \]

\[\mathbf{\Phi} = \Phi^\mathbf{J} \]

\[\mathbf{\Phi} = \text{composante temporelle de } \mathbf{\Phi}, \text{ se transforme comme } t \]

\[\mathbf{\Phi} = \text{composante spatiale, se transforme comme } \mathbf{x} \]

Cette écriture montre que \(\mathbf{\Phi} \) et \(\mathbf{J} \) se transforment comme \(t \) et \(\mathbf{x} \) dans une transformation de Lorentz. De la même façon, toutes les équations de Maxwell peuvent s'écrire sous forme quadridimensionnelle, ce qui explicite leurs propriétés de transformation par les transformations de Lorentz.

En résumé, si la relativité einsteinienne est vraie, il y a conservation locale de la charge. S'il y a conservation locale de la charge, alors l'équation

\[\nabla \cdot \mathbf{B} = \mu_0 \mathbf{J} \]

est fausse car elle impose \(\nabla \cdot \mathbf{J} = 0 \)

ce qui n'est pas toujours vérifié.
Il faut donc modifier au moins l'équation (4), en préservant la linéarité en \(\mathbf{E} \) et \(\mathbf{B} \) (qui mène au principe de superposition) et le premier ordre de dérivation (qui permet de limiter les données initiales à celle des champs sur une surface).

On cherche donc un terme \(\mathbf{\tilde{X}} \) satisfaisant ces conditions

\[
\nabla \cdot \mathbf{\tilde{B}} = \nu_0 \mathbf{J} + \mathbf{\tilde{X}} \implies \nabla \cdot (\mathbf{\tilde{X}} \cdot \mathbf{\tilde{B}}) = 0 = \nu_0 \mathbf{\tilde{J}} + \nabla \times \mathbf{\tilde{X}}
\]

\[
\nabla \times \mathbf{\tilde{J}} - \frac{\partial \mathbf{\tilde{X}}}{\partial t} = 0 \implies u_0 \mathbf{\tilde{E}} + \nabla \times \mathbf{\tilde{X}} = 0
\]

\(\mathbf{\tilde{X}} \) doit être fonction de \(\mathbf{\tilde{E}} \) et de \(\mathbf{\tilde{B}} \).

D'après l'équation (1):

\[
\phi = c_0 \nabla \cdot \mathbf{\tilde{E}} \implies -u_0 c_0 \frac{\partial}{\partial t} (\nabla \cdot \mathbf{\tilde{E}}) + \nabla \cdot \mathbf{\tilde{X}} = 0
\]

Les opérateurs \(\nabla \cdot \) et \(\nabla \times \) portent sur des variables indépendantes, ils commutent, donc :

\[
\nabla \cdot (\mathbf{\tilde{X}} - c_0 \frac{\partial}{\partial t} \mathbf{\tilde{E}}) = 0
\]

La solution générale de cette équation est :

\[
\mathbf{\tilde{X}} = c_0 \frac{\partial}{\partial t} \mathbf{\tilde{E}} = \nabla \times \mathbf{\tilde{Y}}
\]

Ce vecteur \(\mathbf{\tilde{Y}} \) est fonction des champs. Il doit être linéaire en \(\mathbf{\tilde{E}} \) et \(\mathbf{\tilde{B}} \) (supposés suffisants pour décrire la situation physique). Le vecteur \(\mathbf{\tilde{Y}} \) ne peut contenir que des dérivées du premier ordre, donc \(\mathbf{\tilde{Y}} \) ne doit pas contenir de dérivée de \(\mathbf{\tilde{E}} \) et \(\mathbf{\tilde{B}} \):

\[
\mathbf{\tilde{Y}} = c_0 \frac{\partial}{\partial t} \mathbf{\tilde{E}} + \frac{\partial}{\partial t} \mathbf{\tilde{B}} = \mathbf{\tilde{X}}
\]

\(\mathbf{\tilde{X}} \) est un vrai vecteur et \(\nabla \times \mathbf{\tilde{E}} \) un pseudovecteur. Donc \(\alpha = 0 \).

Ceci préserve l'invariance par réflexion dans un miroir :

Si l'on fait une expérience sur une table de laboratoire, et si on la regarde dans un miroir, l'image de l'expérience doit être elle aussi physiquement réalisable. Toutes les autres équations préservant cette invariance, il n'y a pas de raison pour abandonner cette propriété.\(^1\)

\(^1\) Noter que cette invariance n'est pas vérifiée pour les interactions faibles (radiations B). Mais elle est valable pour les interactions électromagnétiques qui nous intéressent ici.

Il nous reste donc :

\[
\nabla \times \mathbf{\tilde{X}} = c_0 \nu_0 \left(\frac{\partial}{\partial t} \mathbf{\tilde{E}} + \beta \mathbf{\tilde{B}} \right)
\]

\[
\nabla \cdot \mathbf{\tilde{B}} - c_0 \nu_0 \frac{\partial}{\partial t} \mathbf{\tilde{E}} - \nu_0 \mathbf{\tilde{J}} = 0
\]

Expérimentalement, on n'a évidemment accès qu'à la combinaison \(\nu_0\) sans qu'on puisse savoir ce que valent séparément \(\nu_0\) et \(1 - \alpha\). On se borne donc à redéfinir \(\nu_0\) (procédé de renormalisation) et la solution :

\[
\nabla \times \mathbf{\tilde{X}} = c_0 \nu_0 \frac{\partial}{\partial t} \mathbf{\tilde{E}}
\]

est tout aussi générale.

C'est ce terme que Maxwell a appelé "courant de déplacement". Pour lui, il s'agissait d'un véritable déplacement de charges dans l'éther. Pour nous, il n'existe pas d'éther et \(\frac{\partial}{\partial t}\) n'a rien à voir avec un courant. C'est un terme de champ qui ne diffère en rien de \(\frac{\partial}{\partial t} \mathbf{\tilde{B}}\).

La bonne écriture des quatre équations sépare les termes de champ des termes de source :

\[
\begin{align*}
(1) & \quad \nabla \cdot \mathbf{\tilde{E}} = 0 \\
(2) & \quad \nabla \times \mathbf{\tilde{E}} + \frac{\partial}{\partial t} \mathbf{\tilde{B}} = 0 \\
(3) & \quad \nabla \cdot \mathbf{\tilde{B}} = 0 \\
(4) & \quad \nabla \times \mathbf{\tilde{B}} - c_0 \nu_0 \frac{\partial}{\partial t} \mathbf{\tilde{E}} + \nu_0 \mathbf{\tilde{J}} = 0
\end{align*}
\]

En particulier, lorsque \(\mathbf{\tilde{J}} = 0\), il existe une solution non triviale à ce système, où les champs \(\mathbf{\tilde{E}}\) et \(\mathbf{\tilde{B}}\) se propagent. Les équations (2) et (4) sont symétriques. (2) traduit l'induction d'un champ électrique par un champ magnétique variable, et (4) l'induction d'un champ magnétique par un champ électrique variable.
Pour en revenir au problème de la sphère radioactive, on peut évaluer \overline{J} sur une sphère de rayon r (Fig.3)

\[4 \pi r^2 J = -\frac{dQ}{dt} \Rightarrow J = -\frac{1}{4\pi r^2} \frac{dQ}{dt} \]

Le champ créé par une charge sphérique Q au point M est:

\[E = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r^2} \Rightarrow \frac{dE}{dt} = \frac{1}{4\pi \varepsilon_0} \frac{dQ}{dt} \]

On a donc:

\[\frac{\partial E}{\partial t} = \frac{\partial B}{\partial t} \]

soit $\nabla \cdot B = 0$ et, puisque $\nabla \cdot E = 0$,

\[B = 0. \]

HYPOTHESE DES MONOPÔLES MAGNETIQUES

Dans l'Équation (3) $\nabla \cdot B = 0$, le zéro signifie qu'il n'existe pas de charge magnétique.

En 1930, DIRAC se pose la question de l'existence éventuelle de charges magnétiques. Pour préserver la symétrie du système d'équations, il faut modifier à la fois les équations (3) et (2):

(3') : $\nabla \cdot B = 0$

(2') : $\nabla \cdot E + \frac{\partial B}{\partial t} = 0$

La charge magnétique est un pseudo-scalaire, c'est à dire que l'image dans un miroir en est une charge magnétique de signe opposé.

Cette théorie a l'intérêt de justifier la quantification de la charge électrique. Rien d'autre ne permet de le faire. Pour comprendre la relation, considérons le paradoxe suivant, dû à FEYNMAN (cf. FEYNMAN 17-8) :

On réalise une expérience par la pensée (Fig.4) à l'aide d'un disque monté sur un axe vertical. Sur le pourtour du disque, on place des bobines métalliques qu'on charge électriquement. On approche un aimant suivant l'axe. Il existe donc au niveau des bobines un champ magnétique variable, donc un champ électrique. Par conséquent, le disque se met à tourner. Comment ceci est-il compatible avec la conservation du moment cinétique?

On peut penser que ce moment vient de l'aimant. Afin de le vérifier, on peut remplacer celui-ci par une boucle de courant et constater qu'aucun phénomène inverse n'agit sur la spire de façon suffisante pour modifier le moment cinétique des électrons.

Le moment cinétique vient en fait du champ électromagnétique qui transporte de l'énergie, une densité de quantité du mouvement et une densité de moment cinétique. Par contre, il n'existe pas de moment cinétique ni de

La trionphie de MAXWELL s'est montré qu'en l'absence de sources le système admettait des solutions non triviales dans lesquelles E et B se propageaient avec une vitesse $v = \frac{1}{\sqrt{\varepsilon_0 \mu_0}}$.

Pour des raisons strictement dimensionnelles, on peut voir que ce terme est bien une vitesse:

(4) $[c_0 \nu_0] = \frac{[T]}{[L]} = \frac{T}{L}$

ou (2) $[\frac{1}{E}] = \frac{[T]}{[L]} \Rightarrow [c_0 \nu_0] = \frac{1}{[L^2]} \Rightarrow [\frac{1}{\varepsilon_0 \mu_0}] = \frac{1}{T}$

Donc la vitesse de propagation des ondes électromagnétiques doit être $\frac{1}{\sqrt{\varepsilon_0 \mu_0}}$ à un coefficient près, qui peut varier n'importe quel. Mais d'après le principe zéro de la physique, tous les coefficients sont voisins de 1, ici égal à 1.

Le premier à avoir vu que c_0 et μ_0 étaient reliés est RIEMANN, en 1840. Pour lui, c_0 et μ_0 étaient des constantes de magnétostatique et d'électrostatique. Il a donc posé le problème d'une relation entre l'électricité, le magnétisme et la lumière. Mais sa communication est restée ignorée.
quantité de mouvement dans un champ électrique pur ou magnétique pur.

Revenons à l'hypothèse de l'existence des monopoles magnétiques. Supposons qu'un monopôle magnétique d'intensité M et une chaque électrique Q se trouvent au même endroit. Ce système crée un champ électrique et un champ magnétique, et ce champ électromagnétique possède un moment cinétique ainsi que de l'énergie (\(E\)) et de la quantité de mouvement. En effet, le moment cinétique est quantifié en unités de h.

\[\alpha = \text{proportionnel à MQ et on obtient, tous calculs faits, à :}\]

\[MQ = n\hbar\]

(dans un système d'unités convenable).

Par conséquent, s'il existe ne serait-ce qu'un monopôle magnétique dans tout l'univers, ceci impose à toutes les charges électriques d'être quantifiées. Les charges magnétiques doivent aussi l'être.

Même s'il ne l'a pas encore jamais trouvé de charge magnétique. Elles peuvent être localisées en des sites bien particuliers ; par exemple, si ces charges sont présentes dans les rayons cosmiques, elles sont guidées par le champ magnétique terrestre et doivent se regrouper aux pôles. On a ainsi des carottages dans l'antartique qui n'ont pas donné de résultat.

On possède une quantité inférieure de la densité de charges magnétiques dans l'univers, ainsi qu'une limite inférieure de leur masse. Il se peut qu'ils soient très lourds et bougent très peu, ce qui les rendrait difficiles à trouver. (\(\text{III}\))

On a essayé d'imaginer un rapport entre quarks et monopôles, mais sans succès.

\(\text{(III)}\) CF "rayon classique" de l'électron.

\(\text{iii}\) Rien ne prouve, cependant, qu'ils n'existent pas, et il serait bien agréable de les découvrir. Il se trouve qu'au cours des dernières années, les physiciens ont inventé des quantités de particules, et malheureusement ce sont toujours les moins intéressantes qui ont l'air d'exister ! Par contre l'existence des charges magnétiques rétablirait une superbe symétrie dans les équations de MAXWELL, ce qui serait vraiment élegant, à supposer que le Bon Dieu ait le même sens de l'élegance que DIRAC. Au lieu de ça, on ne trouve que des quarks qui ne constituent qu'une répétition désolante de la décomposition en corps purs, corps simples, atomes, noyaux et électrons, protons et neutrons, etc....

\[\text{RAPPORTS ENTRE ELECTROMAGNETISME ET MECHANIQUE QUANTIQUE}\]

Le photon représente la quantification du champ électromagnétique. C'est une "particule" au nouvel sens du terme, c'est à dire autre chose qu'une ancienne particule ou qu'une onde.

On peut montrer simplement le rapport entre la particule associée à un champ de force, et la portée du champ de force en question. Ceci dépasse largement le cadre de l'électromagnétisme. La première étude en fut faite par YUKAWA vers 1935 à propos des forces nucléaires. Soient A et B deux objets qui se déplacent en agissant l'un sur l'autre au moyen d'un champ de force qui se propage. On peut représenter ce champ par une particule C et dessiner symboliquement son déplacement (fig.5).

\[\text{En fait, C, étant une particule quantique, n'a pas de trajectoire.}\]

La particule quantique A émet donc une particule C qui est réabsorbée par B selon le processus :

\[\begin{align*}
A & \rightarrow A + C \\
B + C & \rightarrow B
\end{align*}\]

\[\text{Figure 5}\]

Cette particule C a transporté de l'énergie et de la quantité de mouvement. Donc il existe pour A et B un \(\phi_\alpha\) qui est bien ce qu'on appelle une force.

Cependant, de tels processus sont strictement incompatibles avec les lois de conservation de l'énergie et de la quantité de mouvement. On ne peut conserver à la fois E et p\(\hbar\) si une particule se désintègre en elle-même et une autre. Si l'on conserve la quantité de mouvement, on ne peut conserver l'énergie.

\[\text{Ce n'est pas qu'on ne puisse pas déterminer cette trajectoire, mais tout simplement qu'elle n'existe pas}\]
En fait il y a bien une variation ΔE de l'énergie, car la valeur de l'énergie de A n'est pas déterminée. Il existe une dispersion en énergie, une largeur de spectre ΔE. ΔE est lié au temps d'évolution caractéristique du système par $\Delta E = \Delta t \cdot \frac{E}{mc^2}$. Le système n'étant pas dans un état stationnaire, il n'est pas dans un état propre de l'énergie, mais occupe une bande d'énergie, de largeur ΔE, ce qui permet la création de la particule C. Il faut pour cela que ΔE soit comparable à l'énergie de masse de la particule intermédiaire (quelques mc^2 au maximum pour tenir compte de son énergie cinétique):

$$\Delta E \approx mc^2 \Rightarrow \Delta t \approx \frac{E}{mc^2}$$

Δt: est le temps nécessaire à l'échange de la particule C. Pendant ce temps, elle peut parcourir au maximum $c \Delta t$.

La portée de la force exercée par A sur B est donc :

$$a = c \Delta t = \frac{E}{mc^2}$$

Pour une force nucléaire, on avait observé que la portée était de l'ordre de 10^{-15} m. Ceci correspond pour la particule C à une masse de l'ordre de 100 MeV. YUKAWA a donc "inventé" une particule de masse 100 MeV, baptisée méson. Vers 1945, on crut les trouver dans les rayons cosmiques ; ces particules (nu) avaient une masse correcte mais pas les bonnes propriétés. Ils auraient dû interagir très fortement avec les noyaux, or la section efficace d'interaction nucléon- méson σ est très faible. Une conséquence de cette faiblesse est justement la grande abondance des nuons cosmiques au niveau du sol.

En fait, les nuons ne sont que des produits de désintégration des vrais mésons (nu).

Si l'on veut transposer cette théorie au cas de l'électromagnétisme, on constate que plus la masse de la particule d'échange est petite, plus la portée est grande. A la limite, si m est nulle, la portée est infinie, ce qui est le cas pour les forces électromagnétiques.

Le potentiel de YUKAWA d'une interaction associée à une particule de masse m est, en première approximation :

$$U(r) = K \frac{e^{-r/a}}{r}$$

où $a = \frac{E}{mc^2}$

(Le facteur $\frac{1}{r}$ tient au fait que l'espace a 3 dimensions). Mais le facteur $e^{-r/a}$ décroît beaucoup plus vite. La force devient tout à fait négligeable au-delà de 2 ou 3 (2 ou 3 fois pour les forces nucléaires).

Au contraire, un potentiel coulombien de la forme $U = \frac{K}{r}$ décroît très lentement, et l'on peut considérer sa portée comme infinie.

Cette constatation permet de tester la nullité de la masse du photon et la constance de la vitesse de la lumière.

Si la vitesse de la lumière n'était pas c (c est maintenant une constante universelle, constante de l'espace-temps), la masse du photon ne serait pas nulle. La portée de la force électromagnétique serait donc finie, soit :

$$L = \frac{m}{mc^2}$$

Il faut, pour donner une limite supérieure à m, voir sur quelle échelle de distance la loi $U = \frac{K}{r}$ est vraie.

$$U = \frac{K}{r} \quad \text{sur une distance} \; L \rightarrow a \cdot L \rightarrow m < \frac{K}{Lc}$$

Une simple vérification sur $L = 1m$ donne :

$$m < \frac{6.62 \times 10^{-34}}{2 \times 3.0 \times 10^8} \Rightarrow 3.5.10^{-43} \text{kg} = 3.5.10^{-40} \text{g}$$

Les meilleures limites sur la masse du photon viennent actuellement des études spatiales ; on mesure, grâce à un satellite, le champ du dipôle magnétique terrestre (qui présente l'avantage d'être beaucoup plus important que les champs électriques qu'on peut accumuler en laboratoire). Ces mesures sont faites suffisamment loin de la Terre pour que le champ soit à peu près purement dipolaire (à 2 ou 3 R_{Terre}).
La distance L sur laquelle $\frac{v}{R_j}$ est vérifiée est alors de l'ordre de R_j. Les mêmes mesures, répétées sur Jupiter, donnent une limite encore plus basse sur m_j.

Toute vérification de la loi de COULOMB est donc une vérification de la nullité de la masse du photon, et par conséquent de la constance de la vitesse de la lumière.

ANNEXE

Réflexion d'un vrai vecteur

objet

image

Réflexion d'un pseudo-vecteur

Exemple : champ B créé 1. par un solénoïde
2. par une spire

1.

objet \rightarrow image \rightarrow

2.

objects \rightarrow images \rightarrow
4. DEUX POINTS DE VUE DIFFÉRENTS
SUR LA RELATIVITÉ GÉNÉRALE

(rédigée par Anne JADUL)

Il ne faut pas confondre l'ordre historique et la structure logique des choses :

Historiquement, EINSTEIN (1910) a essayé de formuler les lois de la physique, de telle manière qu'elles soient valables dans n'importe quel système de coordonnées. Dans la théorie de la relativité restreinte, les lois n'étaient valables que dans une classe particulière de référentiels : les référentiels d'inertie. En voulant géométriser la théorie de la relativité, de façon à exprimer ces lois sous une forme indépendante du système de coordonnées,
EINSTEIN a été conduit à faire une théorie de la gravitation, qui est la relativité générale.

THÉORIE GÉOMÉTRIQUE DE LA RELATIVITÉ GÉNÉRALE

La loi $\nabla E = 0$ est valable dans tout référentiel euclidien. Il serait intéressant de formuler cette loi sous une forme telle qu'elle soit valable dans n'importe quel système de coordonnées, même non cartésien, même s'il possède par exemple des axes courbés. Par exemple, pour un continuum à deux dimensions, le système de coordonnées pourrait être constitué par deux familles de courbes absolument quelconques : Un ensemble infini de courbes x_i, infiniment rapprochées et ne se coupant pas et un autre ensemble de courbes y_i, satisfaisant aux mêmes conditions.

Chaque point de l'espace, est alors repéré par une courbe x_i et une courbe y_j, ces deux nombres étant les coordonnées du point.

Pour exprimer les lois de la physique dans un référentiel quelconque, il faut utiliser les outils de l'algèbre tensorielle, et introduire une métrique arbitraire qui ne sera plus :

$$d\ell^2 = dx^2 + dy^2$$

(cas particulier où les courbes x_i et y_j sont perpendiculaires dans un espace euclidien à deux dimensions et où (x,y) sont les coordonnées cartésiennes du point).

On aura alors une forme générale du type

$$d\ell^2 = g_{ij} dx^i dx^j$$

C'est à dire une forme bilinéaire par rapport aux éléments infinitésimaux, g_{ij} dépendant du point où l'on se trouve (Par exemple : lorsqu'on utilise dans un plan les coordonnées polaires on a une forme du type $d\ell^2 = dr^2 + r^2 d\theta^2$ soit $g_{11} = 1$ et $g_{22} = 0$.

Pour exprimer les lois de la physique dans n'importe quel système de référence, il suffit de faire intervenir dans ces lois, l'expression du tenseur métrique fondamental (g_{ij}). On pourrait le faire pour la physique Newtonienne, c'est un problème mathématique.

Mais pourquoi la volonté d'avoir une expression géométrique universelle de toute loi, conduirait-elle à une théorie de la gravitation?

Une des propriétés fondamentales des forces de gravitation est l'équivalence de la masse inerte et la masse gravitationnelle. La masse inerte (m_i) est un coefficient qui caractérise, la résistance d'un corps à une variation de mouvement, d'où un coefficient caractérisant les propriétés dynamiques d'un corps. La masse gravitationnelle (m_g) est la quantité, source du champ de gravitation, de même que la charge électrique est source du champ électromagnétique. Or il se trouve qu'il y a proportionnalité universelle entre m_i et m_g. En choisissant convenablement les unités on peut donc les confondre, mais à priori on n'a pas le droit de dire que c'est la même chose.

La loi de NEWTON s'écrit :

$$F = K \frac{m_i m_g}{r^2}$$

expérimentalement $m_g = \gamma m_i$ d'où $F = \gamma K \frac{m_i m_g}{r^2}$

γ est une constante universelle, indépendante du corps en question.

Cette égalité des deux masses m_i et m_g est tout à fait accidentelle dans la mécanique classique et ne joue aucun rôle dans sa structure. Dans la théorie de la relativité générale, cette égalité est fondamentale.
à cause d'une de ses conséquences physiques :
La trajectoire d'un objet dans le champ de gravitation, ne dépend pas de sa masse. En effet d'après la relation fondamentale de la dynamique

\[m_1 \vec{v} = m_2 \vec{g} \]

d'où \[\vec{v} = \vec{g} \] si \(m_1 = m_2 \)

A données initiales identiques, les trajectoires seront identiques :

lorsqu'on lance un satellite, sa trajectoire dépend du point de lancement et de la vitesse initiale mais non de sa masse.

La conséquence fondamentale de l'égalité des masses inertes et gravitationnelles est que dans un champ de gravitation, les trajectoires ne dépendant pas de la masse du corps considéré, se présentent comme ayant des propriétés purement géométriques. C'est à cause de cette propriété spécifique du champ qu'il est intéressant d'essayer d'en donner une description complètement géométrisée. On pourrait faire de même pour les forces électriques mais la relation \(\vec{F} = q \vec{E} \) montre que les trajectoires dépendent du coefficient physique \(k \) et ne seront pas identiques, à même conditions initiales, pour des corps différents. L'écriture géométrisée des équations est possible mais intéressante puisqu'elle dépend d'un facteur physique, alors que dans le cas des forces de gravitation, les trajectoires sont des propriétés purement géométriques du champ. On peut alors, oublier les propriétés physiques pour ne traiter que le problème mathématique.

La relativité générale prend alors la forme d'une théorie purement géométrique.

THÉORIE DU CHAMP DE GRAVITATION : POINT DE VUE PHYSIQUE

On peut cependant aborder le problème d'un autre point de vue, plus physique : en effet, cette conception géométrisée de la gravitation a des inconvénients. Tout d'abord, elle sépare les interactions de gravitation des autres interactions fondamentales (fortes, faibles, électromagnétiques). Il serait plus satisfaisant d'essayer de les traiter sur le même plan. De plus, une fois la relativité générale écrite sous une forme complètement géométrisée, on obtient une théorie rigide que l'on ne peut plus modifier. Si, par exemple le principe d'équivalence, masse inertie = masse gravitationnelle n'est qu'approximativement vrai, et s'il faut apporter une correction à la théorie, on ne peut pas le faire dans le cadre géométrique, trop rigide. Il faudrait développer un point de vue un peu différent, de façon à ne pas commencer par imposer l'égalité \(m_1 = m_2 \), mais faire une théorie du champ de gravitation susceptible d'évoluer avec les connaissances.

Pour cela, il suffit de suivre la même démarche que pour le champ électromagnétique. Qu'est-ce que la gravitation? C'est une interaction ponctuelle transmise par un champ. Une masse crée autour d'elle un champ de gravitation qui se propage et qui agit sur une autre masse.

Mais ce champ doit être décrit conformément à la relativité restreinte. On sait que l'être mathématique qui le représentera, doit avoir des propriétés géométriques particulières dans l'espace-temps et doit être un quadrivecteur ou un tenseur d'une certaine espèce. On cherche donc une forme de potentiel scalaire ou tensoriel, la plus simple possible, et en bâtissant de façon axiomaticate une théorie relativiste einsteinienne, on essai d'obtenir une théorie de la gravitation, qui soit conforme aux trois tests standards de la relativité générale :

- Expliquer le décalage vers le rouge des fréquences des radiations émises par les étoiles

- Expliquer la déflexion des rayons lumineux dans un champ de gravitation

- Rendre compte du déplacement du périhélie de mercure (les orbites ne sont pas rigoureusement des ellipses mais des courbes non fermées)

On pourrait avoir un potentiel scalaire (ou tenseur d'ordre 0) c'est l'exemple du champ Newtonien dans lequel le champ dérive d'un potentiel scalaire. Une telle théorie est possible, mais ne peut pas rendre compte du déplacement du périhélie de Mercure.

Le champ électromagnétique dérive d'un potentiel plus compliqué : c'est un quadrivecteur (ou tenseur d'ordre 1) \([V, X]\). Mais les propriétés du champ électromagnétique sont différentes de celles du champ de gravitation.
Il faut donc essayer un tenseur d'ordre 2 (Gau) et l'on peut construire une théorie du champ, de façon axiomatique comme l'ont fait Landau et Lifchitz, pour le champ électromagnétique (par l'intermédiaire d'un Lagrangien). Mais pour fixer la théorie, il faut faire des hypothèses sur la nature des sources et rechercher comment le champ est couplé à ses sources. C'est le problème des termes en p dans la théorie électromagnétique, où les sources du champ sont uniquement les charges électriques.

Dans le champ de gravitation, on fait l'hypothèse que la source du champ est la masse. Mais dans la théorie de la relativité d'Einstein, il y a équivalence entre la masse et l'énergie d'un système : la masse d'un système est égale à l'énergie dans le référentiel d'inertie (où la quantité de mouvement est nulle). Il faut donc généraliser et prendre comme source du champ de gravitation toute l'énergie d'un système. D'où un caractère spécifique du champ de gravitation : celui-ci transporte de l'énergie qui est elle-même source de champ. En d'autres termes, on a un autocouplage du champ de gravitation : son énergie contribue à créer le champ lui-même. On aurait la même situation, dans le champ électromagnétique si le photon était une particule chargée ; non seulement il serait vecteur du champ mais de plus il engendrerait lui-même le champ.

La conséquence de tout cela est que les équations du champ de gravitation ne seront pas linéaires :

- Dans le champ électromagnétique, le champ \mathbf{E} et la source sont reliés par une relation $\nabla \cdot \mathbf{E} = \rho$.

- Dans le champ de gravitation, on a une relation du type $\nabla \cdot \mathbf{G} = T + \text{ terme en } \mathbf{G}$ (où T est un opérateur différentiel). T étant la densité de matière au point considéré et le terme en \mathbf{G} introduisant une grandeur non linéaire puisque la densité d'énergie est une grandeur quadratique par rapport au champ.

Le fait que le champ lui-même, soit source de champ, par l'intermédiaire de l'énergie qu'il transporte, conduit donc à des théories très compliquées car non linéaires et ceci pour des raisons physiques et non formelles.

En conséquence :

- Les équations différentielles n'étant pas linéaires, il n'y a pas de théorie mathématique générale pour les résoudre, mais il faut faire des approximations pour les linéariser.

- Le principe de superposition ne s'applique pas.

- La notion d'ondes gravitationnelles est compliquée car les équations n'étant pas linéaires, il faut être sûr qu'elles représentent effectivement des phénomènes de propagation. Elles n'auront pas du tout les mêmes caractéristiques que les ondes électromagnétiques.

Comparaison des deux points de vue

Quelles relations y a-t-il entre cette théorie relativiste de la gravitation et la théorie de la relativité générale en tant que théorie géométrisée ?

La théorie relativiste de la gravitation n'a pas une interprétation physique fondamentalement différente de la théorie électromagnétique : dans l'espace plat de Minkowsky de la relativité restreinte, on a un champ $\mathbf{G}(\mathbf{x}, t)$. Supposons que nous voulions vérifier que cet espace est effectivement plat ; il faudrait faire de la géométrie et utiliser des instruments de mesure. Mais tous les objets sont couplés au champ de gravitation (ce n'était pas le cas dans le champ électromagnétique).

Prenons par exemple le mètre étalon dans un espace plat, où règne le champ de gravitation $\mathbf{G}(\mathbf{x}, t)$. Il va subir l'action de \mathbf{G} de façon universelle, c'est-à-dire indépendante de sa masse. Sous l'effet de \mathbf{G}, le résultat de la mesure, qui dans un espace plat serait de 1 m, sera plus grand à cause du raccourcissement du mètre étalon. Mais nous aurons le même effet sur tous les instruments de mesure et par conséquent, on ne pourra pas le mettre en évidence. On n'étudiera que les propriétés géométriques apparentes de l'espace, qui dépendront de la valeur en ce point du champ de gravitation ; on peut toujours supposer que l'espace sous-jacent est un espace plat ; les propriétés spatiales étant affectées de façon universelle
par le champ de gravitation, tout se passe comme si on était dans un espace
tordu, courbé, qui au lieu d'être pseudoeuclidien constant, a une métrique
variable.

De fait, ce champ tensoriel $G_{\mu\nu}(\vec{r}, t)$ va jouer le rôle de la métrique
apparente. Autrement dit, le coefficient g_{ij} qui du point de vue standard
de la relativité générale apparaît seulement comme une propriété géométrique,
du point de vue de la théorie relativiste de la gravitation va apparaître
comme étant le champ de gravitation, tenseur d'ordre 2 symétrique à dix
composantes.

On a donc deux théories : l'une physique qui est une théorie du
champ et l'autre une théorie purement géométrique.

Sur le plan formel, elles sont absolument équivalentes ; l'avant-
tage du point de vue physique étant de pouvoir comparer le champ de gravita-
tion au champ électromagnétique. L'élaboration de la théorie des deux champs
se fait suivant la même démarche, mais ils diffèrent par ce couplage univer-
sel qui fait qu'effectivement tout se passe comme si la théorie du champ de
gravitation était une théorie complètement géométrisée.

Un autre avantage du point de vue physique est que, si la théorie
est fausse (comme c'est vraisemblablement le cas) il sera plus facile de la
modifier, qu'à partir du point de vue géométrique, qui est celui de la
relativité générale traditionnelle : le couplage n'est peut-être pas univer-
sel, il existe peut-être des formes de matière inconnues qui ne seraient
pas couplées au champ de gravitation, etc... En fait il existe déjà des théories de la gravitation plus générales que la théorie standard.

Le point de vue géométrique est avantageux pour ceux qui font
beaucoup de géométrie différentielle car mathématiquement c'est beaucoup
plus simple.

Concluons pour terminer que la relativité générale est moins
générale que la relativité restreinte. En effet, c'est la relativité res-
treinte qui est la théorie générale de la structure d'espace-temps et qui
impose ses contraintes à tous les phénomènes qui ont lieu dans cet espace-
temps.

BIBLIOGRAPHIE

LEVY-LEBLOND (J.N) "Lorentz Transformation" - American Journal of
Physics, 64, 3 (1976), 271.

TAYLOR et WHEELER "À la découverte de l'espace-temps", Dunod.

SMITH (J.H) "Introduction à la relativité", Ediscience.
LES CAHIERS DE FONTENAY

N° 1 : PHILOSOPHIE
(Déc. 1975)
Étude d'épistémologie - Képler - Galilée -
Leibniz - Newton - Bachelard.

N° 2 : PHYSIQUE - CHIMIE
(Mars 1976)
Compte-rendu des journées de Septembre 75 de Fontenay aux Roses consacrées à la cinétique.

N° 3 : PHILOSOPHIE
(Juin 1976)
Le Discours Philosophique des Lycéens.

N° 4 : GEOGRAPHIE
(Sept. 1976)
2 articles : La conception de la géographie humaine chez Vidal de la Blache et les géographes et l'espace.

N° 5 : PHILOSOPHIE
(Déc. 1976)
Articles consacrés à la vie de Condorcet.

N° 6 : LANGUES
(Mars 1977)
Méthode audio-orielle de l'entraînement au "Running Commentary" d'un texte anglais.
Propositions pour un enseignement de la traduction orale en laboratoire de langues.
Pouvoir comparer l'acquisition d'une seconde langue à l'âge adulte à celle de la langue maternelle.
De l'importance du langage dans l'enseignement des mathématiques.

N° 7 : GEOGRAPHIE
(Juin 1977)
Les Exploitations Agricoles.

N° 8 : PHYSIQUE
(Sept. 1976)
Les Relativités.

A PARAÎTRE :

N° 9 : Cahier Littéraire Interdisciplinaire "LE MYTHE" (Décembre 1977)
LES CAHIERS DE FONTENAY

"sont en vente à..."

- BORDEAUX : Librairie "MIMESIS"-5 bis, rue de Grassi 33 000 BORDEAUX
- BREST : Librairie "GRAFFITI"-148, rue Jean-Jaurès 29 200 BREST
- DIJON : Librairie FLAMMARION-FACULTES-27, rue de Mirande 21 000 DIJON
- LILLE : Librairie "L'AGE D'HOMME"-27, rue de la Monnaie 59 000 LILLE
 Librairie "GIARD"-2, rue Royal 59 000 LILLE
- PARIS : Librairie "DES GUIDES"-5, rue Malebranche 75 005 PARIS
 Librairie "AUTREMENT DIT"-73, Bd St-Michel 75 005 PARIS
- REIMS : Librairie "LE GRAND JEU"-20, rue Colbert 51 100 REIMS
- RENNES : Librairie "LES NOURRITURES TERRESTRES" 19, rue Hoche 35 000 RENNES
- STRASBOURG : Librairie "LES IDEES ET LES ARTS"- Place Brant 67 000 STRASBOURG
- TOULOUSE : Librairie "OMBRE BLANCHES"-48, rue Gambetta 31 000 TOULOUSE

C.P.P.A.P. N° 57 861 Dépôt Légal : 3-77 Imp. E.N.S. Fontenay-aux-Roses